Advertisement

Lasers in Medical Science

, Volume 24, Issue 3, pp 425–431 | Cite as

Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans

  • Ernesto Cesar Pinto Leal Junior
  • Rodrigo Álvaro Brandão Lopes-Martins
  • Adriane Aver Vanin
  • Bruno Manfredini Baroni
  • Douglas Grosselli
  • Thiago De Marchi
  • Vegard V. Iversen
  • Jan Magnus Bjordal
Original Article

Abstract

This study aimed to investigate the effect of 830 nm low-level laser therapy (LLLT) on skeletal muscle fatigue. Ten healthy male professional volleyball players entered a crossover randomized double-blinded placebo-controlled trial. Active LLLT (830 nm wavelength, 100 mW output, spot size 0.0028 cm2, 200 s total irradiation time) or an identical placebo LLLT was delivered to four points on the biceps humeri muscle immediately before exercises. All subjects performed voluntary biceps humeri contractions with a load of 75% of the maximum voluntary contraction (MVC) force until exhaustion. After active LLLT the mean number of repetitions was significantly higher than after placebo irradiation [mean difference 4.5, standard deviation (SD) ± 6.0, P = 0.042], the blood lactate levels increased after exercises, but there was no significant difference between the treatments. We concluded that 830 nm LLLT can delay the onset of skeletal muscle fatigue in high-intensity exercises, in spite of increased blood lactate levels.

Keywords

Low-level laser therapy Skeletal muscle Muscle fatigue Blood lactate 

References

  1. 1.
    Green S, Langberg H, Skovgaard D, Bulow J, Kjaer M (2000) Interstitial and arterial-venous [K+] in human calf muscle during dynamic exercise: effect of ischaemia and relation to muscle pain. J Physiol 529:849–861CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Taylor JL, Todd G, Gandevia SC (2006) Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp Pharmacol Physiol 33:400–405. doi: 10.1111/j.1440-1681.2006.04363.x CrossRefPubMedGoogle Scholar
  3. 3.
    Weir JP, Beck TW, Cramer JT, Housh TJ (2006) Is fatigue all in your head? A critical review of the central governor model. Br J Sports Med 40:573–586, discussion 586. doi: 10.1136/bjsm.2005.023028 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hurley BF (1995) Age, gender, and muscular strength. J Gerontol A Biol Sci Med Sci 50:41–44PubMedGoogle Scholar
  5. 5.
    Szubski C, Burtscher M, Loscher WN (2007) Neuromuscular fatigue during sustained contractions performed in short-term hypoxia. Med Sci Sports Exerc 39:948–954. doi: 10.1249/mss.0b013e3180479918 CrossRefPubMedGoogle Scholar
  6. 6.
    Torisu T, Wang K, Svensson P, De Laat A, Fujii H, Arendt-Nielsen L (2006) Effects of muscle fatigue induced by low-level clenching on experimental muscle pain and resting jaw muscle activity: gender differences. Exp Brain Res 174:566–574. doi: 10.1007/s00221-006-0497-4 CrossRefPubMedGoogle Scholar
  7. 7.
    Billaut F, Basset FA, Giacomoni M, Lemaitre F, Tricot V, Falgairette G (2006) Effect of high-intensity intermittent cycling sprints on neuromuscular activity. Int J Sports Med 27:25–30. doi: 10.1055/s-2005-837488 CrossRefPubMedGoogle Scholar
  8. 8.
    Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332. doi: 10.1152/physrev.00015.2007 CrossRefPubMedGoogle Scholar
  9. 9.
    Nethery D, Callahan LA, Stofan D, Mattera R, DiMarco A, Supinski G (2000) PLA(2) dependence of diaphragm mitochondrial formation of reactive oxygen species. J Appl Physiol 89:72–80PubMedGoogle Scholar
  10. 10.
    Friedmann B, Frese F, Menold E, Bartsch P (2007) Effects of acute moderate hypoxia on anaerobic capacity in endurance-trained runners. Eur J Appl Physiol 101:67–73. doi: 10.1007/s00421-007-04730 CrossRefPubMedGoogle Scholar
  11. 11.
    Bourdin M, Messonnier L, Lacour JR (2004) Laboratory blood lactate profile is suited to on water training monitoring in highly trained rowers. J Sports Med Phys Fitness 44:337–341PubMedGoogle Scholar
  12. 12.
    Chow RT, Heller GZ, Barnsley L (2006) The effect of 300 mW, 830 nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain 124:201–210. doi: 10.1016/j.pain.2006.05.018 CrossRefPubMedGoogle Scholar
  13. 13.
    Gür A, Karakoc M, Nas K, Cevik R, Sarac J, Demir E (2002) Efficacy of low power laser therapy in fibromyalgia: a single-blind, placebo-controlled trial. Lasers Med Sci 17:57–61. doi: 10.1007/s10103-002-8267-4 CrossRefPubMedGoogle Scholar
  14. 14.
    Lopes-Martins RA, Marcos RL, Leonardo PS, Prianti AC Jr, Muscara MN, Aimbire F et al (2006) Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol 101:283–288. doi: 10.1152/japplphysiol.01318.2005 CrossRefPubMedGoogle Scholar
  15. 15.
    Leal Junior ECP, Lopes-Martins R, Dalan F, Ferrari M, Sbabo FM, Generosi RA et al (2008) Effect of 655 nm low level laser therapy (LLLT) in exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg (in press)Google Scholar
  16. 16.
    Enwemeka CS (2001) Attenuation and penetration depth of red 632.8 nm and invisible infrared 904 nm light in soft tissues. J Laser Ther 13:95–101CrossRefGoogle Scholar
  17. 17.
    Avni D, Levkovitz S, Maltz L, Oron U (2005) Protection of skeletal muscles from ischemic injury: low-level laser therapy increases antioxidant activity. Photomed Laser Surg 23:273–277. doi: 10.1089/pho.2005.23.273 CrossRefPubMedGoogle Scholar
  18. 18.
    Rizzi CF, Mauriz JL, Freitas Correa DS, Moreira AJ, Zettler CG, Filippin LI et al (2006) Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med 38:704–713CrossRefPubMedGoogle Scholar
  19. 19.
    Cairns SP (2006) Lactic acid and exercise performance: culprit or friend? Sports Med 36:279–291. doi: 10.2165/00007256-200636040-00001 CrossRefPubMedGoogle Scholar
  20. 20.
    Lamb GD, Stephenson DG (2006) Point: lactic acid accumulation is an advantage during muscle activity. J Appl Physiol 100:1410–1412, discussion 1414. doi: 10.1152/japplphysiol.00023.2006 CrossRefPubMedGoogle Scholar
  21. 21.
    Ortenblad N, Stephenson DG (2003) A novel signalling pathway originating in mitochondria modulates rat skeletal muscle membrane excitability. J Physiol 548:139–145PubMedPubMedCentralGoogle Scholar
  22. 22.
    Tullberg M, Alstergren PJ, Ernberg MM (2003) Effects of low-power laser exposure on masseter muscle pain and microcirculation. Pain 105:89–96. doi: 10.1016/S0304-3959(03)00166-0 CrossRefPubMedGoogle Scholar
  23. 23.
    Douris P, Southard V, Ferrigi R, Grauer J, Katz D, Nascimento C et al (2006) Effect of phototherapy on delayed onset muscle soreness. Photomed Laser Surg 24:377–382. doi: 10.1089/pho.2006.24.377 CrossRefPubMedGoogle Scholar
  24. 24.
    Craig JA, Barlas P, Baxter GD, Walsh DM, Allen JM (1996) Delayed-onset muscle soreness: lack of effect of combined phototherapy/low-intensity laser therapy at low pulse repetition rates. J Clin Laser Med Surg 14:375–380PubMedGoogle Scholar
  25. 25.
    Barlas P, Craig J, Baxter GD, Walsh DM, Allen JM (1995) A double blind placebo controlled investigation of the effects of combined phototherapy/low intensity laser therapy upon delayed muscle soreness. 12th International Congress of the World Confederation for Physical Therapy, Washington, DC, p 1088Google Scholar
  26. 26.
    Chow RT, Barnsley L (2005) Systematic review of the literature of low-level laser therapy (LLLT) in the management of neck pain. Lasers Surg Med 37:46–52CrossRefPubMedGoogle Scholar
  27. 27.
    Chow RT, David MA, Armati PJ (2007) 830 nm laser irradiation induces varicosity formation, reduces mitochondrial membrane potential and blocks fast axonal flow in small and medium diameter rat dorsal root ganglion neurons: implications for the analgesic effects of 830 nm laser. J Peripher Nerv Syst 12:28–39. doi: 10.1111/j.1529-8027.2007.00114.x CrossRefPubMedGoogle Scholar
  28. 28.
    Bernstein E, Carey TS, Garrett JM (2004) The use of muscle relaxant medications in acute low back pain. Spine 29:1346–1351. doi: 10.1097/01.BRS.0000128258.49781.74 CrossRefPubMedGoogle Scholar
  29. 29.
    Armagan O, Tascioglu F, Ekim A, Oner C (2006) Long-term efficacy of low level laser therapy in women with fibromyalgia: a placebo-controlled study. J Back Musculoskelet Rehabil 19:135–140CrossRefGoogle Scholar
  30. 30.
    Jeschonneck M, Grohmann G, Hein G, Sprott H (2000) Abnormal microcirculation and temperature in skin above tender points in patients with fibromyalgia. Rheumatology (Oxford) 39:917–921. doi: 10.1093/rheumatology/39.8.917 CrossRefGoogle Scholar
  31. 31.
    Mease P (2005) Fibromyalgia syndrome: review of clinical presentation, pathogenesis, outcome measures, and treatment. J Rheumatol Suppl 75:6–21PubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2008

Authors and Affiliations

  • Ernesto Cesar Pinto Leal Junior
    • 1
    • 2
    • 3
  • Rodrigo Álvaro Brandão Lopes-Martins
    • 4
  • Adriane Aver Vanin
    • 5
  • Bruno Manfredini Baroni
    • 1
    • 5
  • Douglas Grosselli
    • 1
    • 6
  • Thiago De Marchi
    • 1
    • 5
  • Vegard V. Iversen
    • 7
  • Jan Magnus Bjordal
    • 3
    • 8
  1. 1.Laboratory of Human Movement (LMH)University of Caxias do Sul (UCS)Caxias do SulBrazil
  2. 2.Sports Medicine Institute (IME)University of Caxias do Sul (UCS)Caxias do SulBrazil
  3. 3.Section for Physiotherapy Science, Institute of Public Health and Primary Health CareUniversity of BergenBergenNorway
  4. 4.Laboratory of Pharmacology and Phototherapy of Inflammation, Department of Pharmacology, Institute of Biomedical SciencesUniversity of São Paulo (USP)São PauloBrazil
  5. 5.Faculty of PhysiotherapyUniversity of Caxias do Sul (UCS)Caxias do SulBrazil
  6. 6.Faculty of Physical EducationUniversity of Caxias do Sul (UCS)Caxias do SulBrazil
  7. 7.Section for Physiology, Institute of BiomedicineUniversity of BergenBergenNorway
  8. 8.Bergen University College, Institute for Physical TherapyBergenNorway

Personalised recommendations