Skip to main content
Log in

Photodynamic inhibition of acetylcholinesterase after two-photon excitation of copper tetrasulfophthalocyanine

  • Original article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Sequential two-photon (2-γ) activated copper tetrasulfophthalocyanine (CuPcS4) was shown capable of inactivating acetylcholinesterase (ACE). ACE activity was measured photometrically by the Ellman method. Simultaneous irradiation of ACE in the presence of CuPcS4 with 514 nm (183 mW/cm2) and 670 nm (86 mW/cm2) continuous wave (CW) light induced a 20–50% increase in enzyme inhibition as compared to one-photon (1-γ) irradiation, using either 514- or 670-nm (CW) light at the same fluences. The enzyme activity was not affected by CuPcS4 or light alone, decreased linearly with the irradiation time, and was shown to be oxygen-dependent. We conclude that the photoinactivation of ACE with sequential 2-γ irradiation involves reactive oxygen species produced by the interaction of the upper excited Tn state of CuPcS4 with molecular oxygen. As CuPcS4 shows little activity as a conventional 1-γ photosensitizer, unwanted side effects such as prolonged skin sensitivity are eliminated rendering 2-γ photodynamic therapy advantageous for the treatment of selected medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dougherty TJ (1987) Photosensitizers: therapy and detection of malignant tumors. Photochem Photobiol 45:879–889

    PubMed  CAS  Google Scholar 

  2. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  PubMed  CAS  Google Scholar 

  3. Rosenthal I, Krishna CM, Riesz P, Ben-Hur E (1986) The role of molecular oxygen in the photodynamic effect of phthalocyanines. Radiat Res 107:136–142

    Article  PubMed  CAS  Google Scholar 

  4. Foote CS (1991) Definition of type I and type II photosensitized oxidation. Photochem Photobiol 54:659–664

    PubMed  CAS  Google Scholar 

  5. Weishaupt KR, Gomer CJ, Dougherty TJ (1976) Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a murine tumor. Cancer Res 36:2326–2329

    PubMed  CAS  Google Scholar 

  6. Sharman WM, Allen CM, van Lier JE (2000) Role of activated oxygen species in photodynamic therapy. Methods Enzymol 319:376–400

    Article  PubMed  CAS  Google Scholar 

  7. Sharman WM, Allen CM, van Lier JE (1999) Photodynamic therapeutics: Basic principles and clinical applications. Drug Discov Today 4:507–517

    Article  PubMed  CAS  Google Scholar 

  8. Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387

    Article  PubMed  CAS  Google Scholar 

  9. Vrouenraets MB, Visser GWM, Snow GB, van Dongen GAMS (2003) Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res 23:505–522

    PubMed  CAS  Google Scholar 

  10. Capella MAM, Capella LS (2003) A light in multidrug resistance: Photodynamic treatment of multidrug-resistant tumors. J Biomed Sci 10:361–366

    Article  PubMed  CAS  Google Scholar 

  11. Hayata Y, Konaka C (1990) Photodynamic therapy of neoplastic disease. In: David Kessel (ed) Photodynamic therapy of neoplastic disease, vol 1. CRC, Boca Raton, FL, pp 44–63

    Google Scholar 

  12. Freeman TL, Cope SE, Stringer MR, Cruse-Sawyer JE, Brown SB, Batchelder DN, Birbeck K (1998) Investigation of the subcellular localization of zinc phthalocyanines by Raman mapping. Appl Spectrosc 52:1257–1263

    Article  CAS  Google Scholar 

  13. Andreoni A, Cubeddu R, De Silvestri S, Laporta P, Svelto O (1982) Two-step laser activation of hematoporphyrin derivative. Chem Phys Lett 88:37–39

    Article  CAS  Google Scholar 

  14. Andreoni A (1987) Two-step photoactivation of hematoporphyrin by excimer-pumped dye-laser pulses. J Photochem Photobiol B Biol 1:181–193

    Article  CAS  Google Scholar 

  15. Leupold D, Freyer W (1992) Proposal of modified mechanisms for photodynamic therapy. J Photochem Photobiol B Biol 12:311–313

    Article  CAS  Google Scholar 

  16. Stiel H, Teuchner K, Paul A, Freyer W, Leupold D (1994) Two-photon excitation of alkaly-substituted magnesium phthalocyanine: radical formation via higher excited states. J Photochem Photobiol A Chem 80:289–298

    Article  CAS  Google Scholar 

  17. Fluhler EN, Hurley JK, Kochevar IE (1989) Laser intensity and wavelength dependence of Rose-Bengal-photosensitized inhibition of red blood cell acetylcholinesterase. Biochim Biophys Acta 990:269–275

    PubMed  CAS  Google Scholar 

  18. Smith G, McGimpsey WG, Lynch M, Kochevar IE, Redmond RW (1994) An efficient oxygen independent two-photon photosensitization mechanism. Photochem Photobiol 59:135–139

    PubMed  CAS  Google Scholar 

  19. Mir Y, Houde D, van Lier JE (2006) Two-photon absorption of copper tetrasulfophthalocyanine induces phototoxicity towards Jurkat cells in vitro. Photochem Photobiol Sci 5:1024–1030

    Article  PubMed  CAS  Google Scholar 

  20. Kaneko Y, Nishimura Y, Arai T, Sakuragi H, Tokumaru K, Matsunaga D (1995) UV light and red light chemistry of metallophthalocyanine: wavelength dependent photochemical reduction of tetrasodium salts of Zn(II) and Cu (II) tetrasulphonatophthalocyanines with amines. J Photochem Photobiol A Chem 89:37–44

    Article  CAS  Google Scholar 

  21. Lee See K, Forbes IJ, Betts WH (1984) Oxygen dependency of photocytotoxicity with haematoporphyrin derivative. Photochem Photobiol 39:631–634

    PubMed  CAS  Google Scholar 

  22. Halbhuber KJ, Lemke C, Stibenz D, Linss W (1984) Activation of acetylcholine esterase (ACHE) as a sign of erythrocyte membrane alteration. Exp Pathol 25:35–44

    PubMed  CAS  Google Scholar 

  23. Valenzeno DP (1987) Photomodification of biological membranes with emphasis on singlet oxygen mechanisms. Photochem Photobiol 46:147–160

    PubMed  CAS  Google Scholar 

  24. Cauchon N, Nader M, Bkaily G, van Lier JE, Hunting D (2006) Photodynamic activity of substituted zinc trisulfophthalocyanines: role of plasma membrane damage. DOI 10.1562/2005-12-13-RA-752

  25. Cauchon N, Langlois R, Rousseau JA, Tessier G, Cadorette J, Lecompte R, Hunting DJ, Pavan RA, Zeisler SK, van Lier JE (2006) PET imaging of apoptosis with 64Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V. DOI 10.1007/s00259-006-0199-y

  26. van Lier JE (1990) Phthalocyanines as sensitizers for PDT of cancer. In: Kessel D (ed) Photodynamic therapy of neoplastic disease, vol 1. CRC, Boca Raton, FL, pp 279–290

    Google Scholar 

  27. Allen CM, Sharman WM, van Lier JE (2001) Current status of phthalocyanines in the photodynamic therapy of cancer. J Porphyr Phthalocyanines 5:161–169

    Article  CAS  Google Scholar 

  28. Gantchev TG, van Lier JE (1995) Catalase inactivation following photosensitization with tetrasulfonated metallophthalocyanines. Photochem Photobiol 62:123–134

    PubMed  CAS  Google Scholar 

  29. Fournier M, Pépin C, Houde D, Ouellet R, van Lier JE (2003) Ultrafast studies of the excited-state dynamics of copper and nickel phthalocyanine tetrasulfonates: potential sensitizers for the two-photon photodynamic therapy of tumours. Photochem Photobiol Sci 2:1–8

    Article  CAS  Google Scholar 

  30. Weber JH, Bush DH (1965) Complexes derived from strong field ligands XIX. Magnetic properties of transition metal derivatives of 4,4′,4″,4″′-tetrasulfophthalocyanines. Inorg Chem 4:469–471

    Article  CAS  Google Scholar 

  31. Ellman GL, Courtney KD, Andres Jr V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  32. Tomlinson G, Mutus B, McLennan I (1981) Activation and inactivation of acetylcholinesterase by metal ions. Can J Biochem 59:728–735

    Article  PubMed  CAS  Google Scholar 

  33. Lambert CR, Stiel H, Leupold D, Lynch MC, Kochevar IE (1996) Intensity-dependent enzyme photosensitization using 532 nm nanosecond laser pulses. Photochem Photobiol 63:154–160

    PubMed  CAS  Google Scholar 

  34. Laustriat G (1986) Molecular mechanisms of photosensitization. Biochimie 68:771–778

    Article  PubMed  CAS  Google Scholar 

  35. Tõugu V (2001) Acetylcholinesterase: mechanism of catalysis and Inhibition. Curr Med Chem 1:155–170

    Google Scholar 

  36. Tan RC, Truong TN, McCammon JA, Sussman JL (1993) Acetylcholinesterase: electrostatic steering increases the rate of ligand binding. Biochemistry 32:401–403

    Article  PubMed  CAS  Google Scholar 

  37. Ripoll DR, Faerman CH, Axelsen PH, Silman I, Sussman JL (1993) An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase. Proc Natl Acad Sci USA 90:5128–5132

    Article  PubMed  CAS  Google Scholar 

  38. Gilson MK, Straatsma TP, McCammon JA, Ripoll DR, Faerman CH, Axelsen PH, Silman I, Sussman JL (1994) Open “back door” in a molecular dynamics simulation of acetylcholinesterase. Science 263:1276–1278

    Article  PubMed  CAS  Google Scholar 

  39. Scaiano JC, Johnston LJ, McGimpsey WG, Weir D (1988) Photochemistry of organic reaction intermediates: novel reaction paths induced by two-photon laser excitation. Acc Chem Res 21:22–29

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the Canadian Institutes of Health Research (CIHR, grant no. MOP-37768; J. E. v. L.), the Canadian Institute for Photonics Innovations (D. H.), and by the Intelligent Materials and Systems Institute of the University of Sherbrooke (D. H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Houde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mir, Y., Houde, D. & van Lier, J.E. Photodynamic inhibition of acetylcholinesterase after two-photon excitation of copper tetrasulfophthalocyanine. Lasers Med Sci 23, 19–25 (2008). https://doi.org/10.1007/s10103-007-0446-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-007-0446-x

Keywords

Navigation