Advertisement

Lasers in Medical Science

, Volume 20, Issue 2, pp 62–67 | Cite as

Photodynamic inactivation of fibroblasts by a cationic porphyrin

  • Saskia A. G. Lambrechts
  • Kevin R. Schwartz
  • Maurice C. G. AaldersEmail author
  • Jacob B. Dankert
Original Article

Abstract

An important determinant of the clinical applicability and value of antimicrobial photodynamic inactivation (PDI) is the cytotoxicity of the treatment to human cells. We evaluated the in vitro cytotoxicity of PDI to human dermal fibroblasts using 5-phenyl-10,15,20-tris(N-methyl-4-pyridyl)porphyrin chloride (TriP[4]) as the photosensitiser. The fibroblasts were exposed to a PDI regime that is known to be sufficient for the inactivation of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans [1]. The PDI experiments were carried out in phosphate-buffered saline (PBS) and in 6.25%, 12.5%, 25% and 50% fetal calf serum (FCS)/PBS suspensions. Cell viability subsequent to exposure was evaluated after 0 h, 6 h and 18 h using the methylthiazoletetrazolium (MTT) assay and compared to pretreatment values. At a TriP[4] concentration previously demonstrated to induce a 5log10-unit reduction in a viable count for S. aureus, 79% of the fibroblasts were photo-inactivated. Increasing the FCS concentration in the medium protected the fibroblasts against PDI. Based on our in vitro results, we propose that in vivo PDI of S. aureus holds potential; however, PDI of P. aeruginosa and C. albicans will probably require such a strong PDI regime that it will induce substantial damage to fibroblasts.

Keywords

Photodynamic inactivation Fibroblast Serum Cationic porphyrin 

Abbreviations

FCS

Fetal calf serum

MTT

Methylthiazoletetrazolium

PDI

Photodynamic inactivation

PBS

Phosphate-buffered saline

TriP[4]

5-phenyl-10,15,20-tris(N-methyl-4-pyridyl)porphyrin chloride

References

  1. 1.
    Lambrechts SAG, Aalders MCG, Verbraak FD, Lagerberg JW, Dankert J, Schuitmaker JJ (2005) Effect of albumin on the photoinactivation of microorganisms by a cationic porphyrin. J Photochem Photobiol B 79:51–57CrossRefPubMedGoogle Scholar
  2. 2.
    Pruitt B, McManus A, Kim S, Goodwin C (1998) Burn wound infections: current status. World J Surg 22:135–145CrossRefPubMedGoogle Scholar
  3. 3.
    Mayhall CG (2003) The epidemiology of burn wound infections: then and now. Clin Infect Dis 37:543–550CrossRefPubMedGoogle Scholar
  4. 4.
    Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26:131–138CrossRefPubMedGoogle Scholar
  5. 5.
    Singer AJ, McClain SA (2002) Persistent wound infection delays epidermal maturation and increases scarring in thermal burns. Wound Repair Regen 10:372–377CrossRefPubMedGoogle Scholar
  6. 6.
    Livermore DM (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 34:634–640CrossRefPubMedGoogle Scholar
  7. 7.
    Cook N (1998) Methicillin-resistant Staphylococcus aureus versus the burn patient. Burns 24:91–98CrossRefPubMedGoogle Scholar
  8. 8.
    Fluit AC, Verhoef J, Schmitz FJ (2001) Frequency of isolation and antimicrobial resistance of gram-negative and gram-positive bacteria from patients in intensive care units of 25 European university hospitals participating in the European arm of the SENTRY Antimicrobial Surveillance Program 1997–1998. Eur J Clin Microbiol Infect Dis 20:617–625CrossRefPubMedGoogle Scholar
  9. 9.
    Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353CrossRefPubMedGoogle Scholar
  10. 10.
    Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42:13–28CrossRefPubMedGoogle Scholar
  11. 11.
    Fritsch C, Goerz G, Ruzicka T (1998) Photodynamic therapy in dermatology. Arch Dermatol 134:207–214CrossRefPubMedGoogle Scholar
  12. 12.
    Prosst RL, Wolfsen HC, Gahlen J (2003) Photodynamic therapy for esophageal diseases: a clinical update. Endoscopy 35:1059–1068CrossRefPubMedGoogle Scholar
  13. 13.
    Bressler NM, Bressler SB (2000) Photodynamic therapy with verteporfin (Visudyne): impact on ophthalmology and visual sciences. Invest Ophthalmol Vis Sci 41:624–628PubMedGoogle Scholar
  14. 14.
    Maisch T, Szeimies RM, Jori G, Abels C (2004) Antibacterial photodynamic therapy in dermatology. Photochem Photobiol Sci 3:907–917CrossRefPubMedGoogle Scholar
  15. 15.
    Lambrechts SAG, Aalders MCG, Langeveld-Klerks DH, Khayali Y, Lagerberg JWM (2003) Effect of monovalent and divalent cations on the photoinactivation of bacteria with meso-substituted cationic porphyrins. Photochem Photobiol 79:297–302CrossRefGoogle Scholar
  16. 16.
    Rex JH, Rinaldi MG, Pfaller MA (1995) Resistance of Candida species to fluconazole. Antimicrob Agents Chemother 39:1–8PubMedGoogle Scholar
  17. 17.
    Doughty D (1994) A rational approach to the use of topical antiseptics. J Wound Ostomy Continence Nurs 21:224–231PubMedGoogle Scholar
  18. 18.
    Soukos NS, Ximenez-Fyvie LA, Hamblin MR, Socransky SS, Hasan T (1998) Targeted antimicrobial photochemotherapy. Antimicrob Agents Chemother 42:2595–2601PubMedGoogle Scholar
  19. 19.
    Zeina B, Greenman J, Corry D, Purcell WM (2003) Antimicrobial photodynamic therapy: assessment of genotoxic effects on keratinocytes in vitro. Br J Dermatol 148:229–232CrossRefPubMedGoogle Scholar
  20. 20.
    Soukos NS, Wilson M, Burns T, Speight PM (1996) Photodynamic effects of toluidine blue on human oral keratinocytes and fibroblasts and Streptococcus sanguis evaluated in vitro. Lasers Surg Med 18:253–259CrossRefPubMedGoogle Scholar
  21. 21.
    Soncin M, Fabris C, Busetti A, Dei D, Nistri D, Roncucci G, Jori G (2002) Approaches to selectivity in the Zn(II)-phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus. Photochem Photobiol Sci 1:815–819CrossRefPubMedGoogle Scholar
  22. 22.
    Bhatti M, MacRobert A, Henderson B, Shepherd P, Cridland J, Wilson M (2000) Antibody-targeted lethal photosensitization of Porphyromonas gingivalis. Antimicrob Agents Chemother 44:2615–2618CrossRefPubMedGoogle Scholar
  23. 23.
    Smijs TG, Schuitmaker HJ (2003) Photodynamic inactivation of the dermatophyte Trichophyton rubrum. Photochem Photobiol 77:556–560CrossRefPubMedGoogle Scholar
  24. 24.
    Smijs TG, van der Haas RNS, Lugtenburg J, Liu Y, de Jong RLP, Schuitmaker HJ (2004) Photodynamic treatment of the dermatophyte Trichophyton rubrum and its microconidia with porphyrin photosensitizers. Photochem Photobiol 80:197–202CrossRefPubMedGoogle Scholar
  25. 25.
    Trannoy LL, Lagerberg JW, Dubbelman TM, Schuitmaker HJ, Brand H (2004) Positively charged porphyrins: a new series of photosensitizers for sterilization of RBCs. Transfusion 44:1186–1196CrossRefPubMedGoogle Scholar
  26. 26.
    Merchat M, Spikes JD, Bertoloni G, Jori G (1996) Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins. J Photochem Photobiol 35:149–157CrossRefGoogle Scholar
  27. 27.
    Lambrechts SAG, Aalders MCG, Van Marle J (2005) Mechanistic study of the photodynamic inactivation of Candida albicans by a cationic porphyrin. Antimicrob Agents Chemother 49(5):2026–2034CrossRefPubMedGoogle Scholar
  28. 28.
    Birke G, Liljedahl SO, Plantin LO, Reizenstein P (1968) Studies on burns. IX. The distribution and losses through the wound of 131I-albumin measured by whole-body counting. Acta Chir Scand 134:27–36PubMedGoogle Scholar
  29. 29.
    Birke G, Liljedahl SO, Plantin LO (1968) Distribution and losses of plasma proteins during the early stage of severe burns. Ann N Y Acad Sci 150:895–904PubMedGoogle Scholar
  30. 30.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  31. 31.
    Haylett AK, Moore JV (2002) Comparative analysis of foetal calf and human low density lipoprotein: relevance for pharmacodynamics of photosensitizers. J Photochem Photobiol 66:171–178CrossRefGoogle Scholar
  32. 32.
    Moan J, Rimington C, Western A (1985) The binding of dihematoporphyrin ether (photofrin II) to human serum albumin. Clin Chim Acta 145:227–236CrossRefPubMedGoogle Scholar
  33. 33.
    Nitzan Y, Balzam-Sudakevitz A, Ashkenazi H (1998) Eradication of Acinetobacter baumannii by photosensitized agents in vitro. J Photochem Photobiol 42:211–218CrossRefGoogle Scholar
  34. 34.
    Takemura T, Ohta N, Nakajima S, Sakata I (1992) The mechanism of photosensitization in photodynamic therapy: chemiluminescence caused by photosensitization of porphyrins in saline containing human serum albumin. Photochem Photobiol 55:137–140PubMedGoogle Scholar
  35. 35.
    Aigner T (2002) Apoptosis, necrosis, or whatever: how to find out what really happens? J Pathol 198:1–4CrossRefPubMedGoogle Scholar
  36. 36.
    Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis: an overview of cell death. Am J Pathol 146:3–15PubMedGoogle Scholar
  37. 37.
    Zeina B, Greenman J, Corry D, Purcell WM (2002) Cytotoxic effects of antimicrobial photodynamic therapy on keratinocytes in vitro. Br J Dermatol 146:568–573CrossRefPubMedGoogle Scholar
  38. 38.
    Smijs TG, Nivard MJ, Schuitmaker HJ (2004) Development of a test system for mutagenicity of photosensitizers using Drosophila melanogaster. Photochem Photobiol 79:332–338CrossRefPubMedGoogle Scholar
  39. 39.
    Tatnall FM, Leigh IM, Gibson JR (1990) Comparative study of antiseptic toxicity on basal keratinocytes, transformed human keratinocytes and fibroblasts. Skin Pharmacol 3:157–163PubMedGoogle Scholar
  40. 40.
    Teepe RG, Koebrugge EJ, Lowik CW, Petit PL, Bosboom RW, Twiss IM, Boxma H, Vermeer BJ, Ponec M (1993) Cytotoxic effects of topical antimicrobial and antiseptic agents on human keratinocytes in vitro. J Trauma 35:8–19PubMedGoogle Scholar
  41. 41.
    Cooper ML, Laxer JA, Hansbrough JF (1991) The cytotoxic effects of commonly used topical antimicrobial agents on human fibroblasts and keratinocytes. J Trauma 31:775–782PubMedGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2005

Authors and Affiliations

  • Saskia A. G. Lambrechts
    • 1
    • 2
  • Kevin R. Schwartz
    • 1
  • Maurice C. G. Aalders
    • 1
    Email author
  • Jacob B. Dankert
    • 2
  1. 1.Laser Center K01-225-5, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Medical Microbiology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations