Lasers in Medical Science

, Volume 20, Issue 1, pp 28–34 | Cite as

Effect of 655-nm diode laser on dog sperm motility

  • M. I. Corral-Baqués
  • T. Rigau
  • M. Rivera
  • J. E. Rodríguez
  • J. Rigau
Original Article


Sperm motility depends on energy consumption. Low-level laser irradiation increases adenosin triphosphate (ATP) production and energy supply to the cell. The aim of this study is to analyse whether the irradiation affects the parameters that characterise dog sperm motility. Fresh dog sperm samples were divided into four groups and irradiated with a 655-nm continuous-wave diode laser with varying doses: 0 (control), 4, 6 and 10 J/cm2. At 0, 15 and 45 min following irradiation, pictures were taken of all the groups in order to study motility with computer-aided sperm analysis (CASA). Functional tests were also performed. Average path velocity (VAP), linear coefficient (Lin) and beat cross frequency (BCF) were statistically and significantly different when compared to the control. The functional tests also showed a significant difference. At these parameters, the 655-nm continuous-wave diode laser improves the speed and linear coefficient of the sperm.


Semen quality Low-power laser 



Mean amplitude of lateral head displacement


Adenosin triphosphate


Beat cross frequency


Computer-aided sperm analysis




Minimum harmonic oscillation of the head


Hypoosmotic swelling test


Linear coefficient


Total motility


Statistical error means


Average path velocity



We would like to thank SORISA for providing us with the laser and the power meter equipment.


  1. 1.
    Albarracin JL, Mogas T, Palomo MJ, Peña A, Rigau T, Rodriguez-Gil JE (2004) In vitro capacitation and acrosome reaction of dog spermatozoa can be feasibly attained in a defined medium without glucose. Reprod Dom Anim 39:129–135Google Scholar
  2. 2.
    Almeida-Lopes L, Rigau J, Amaro Zângaro R, Guidugli-Neto J, Jaeger MM (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184Google Scholar
  3. 3.
    Amat A, Nicolau R, Rigau J, Tomàs J (2002) Energy light interaction with molecules with high energy bond. In: Proceedings of XVIII Congresso Brasileiro de engenharia biomédica, San Jose dos Campos, Sao Paolo, 9–12 September 2002, ALB-65–2, p 91Google Scholar
  4. 4.
    Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–256Google Scholar
  5. 5.
    Caiza de la Cueva FI, Rigau T, Miró J, Bonet S, Briz M, Rodríguez-Gil JE (1997a) Subjecting horse spermatozoa to hypoosmotic incubation: effects of ouabain. Theriogenology 47:765–784Google Scholar
  6. 6.
    Caiza de la Cueva FI, Pujol MR, Rigau T, Bonet S, Miró J, Briz M, Rodríguez-Gil JE (1997b) Resistance to osmotic stress of horse spermatozoa: the role of ionic pumps and their relationship to cryopreservation success. Theriogenology 48:947–968Google Scholar
  7. 7.
    Caiza de la Cueva FI, Rigau T, Pujol MR, Piedrafita J, Rodríguez-Gil JE (1997c) Resistance to hyperosmotic stress in boar spermatozoa: the role of the ionic pumps and the relationship with cryosurvival. Anim Reprod Sci 48:301–315Google Scholar
  8. 8.
    Cisneros JL, Camacho F (2000) Láser y fuentes de luz pulsada intensa en dermatología y dermocosmética. Aula Médica Ediciones, Madrid, pp 57–68Google Scholar
  9. 9.
    Ebner T, Moser M, Yaman C, Sommergruber M, Tews G (2002) Successful birth after laser assisted immobilization of spermatozoa before intracytoplasmatic injection. Fertil Steril 78(2):417–418Google Scholar
  10. 10.
    Eddy EM, O’Brien DA (1988) The spermatozoon. In: Knobil E, Neill JD (eds) The physiology of reproduction. Raven Press, New York, pp 27–77Google Scholar
  11. 11.
    Ellington J, Scarlett J, Meyers-Wallen V, Mohammed HO, Surman V (1993) Computer-assisted sperm analysis of canine spermatozoa motility measurements. Theriogenology 40:725–733Google Scholar
  12. 12.
    England GCW, Plummer JM (1993) Hypo-osmotic swelling of dog spermatozoa. J Reprod Fert Suppl 47:261–270Google Scholar
  13. 13.
    Feldman EC, Nelson RW (1996) Clinical and diagnostic evaluation of the male reproductive tract. In: Canine and feline endocrinology and reproduction, 2nd edn. WB Saunders, Philadelphia, pp 673–690Google Scholar
  14. 14.
    Günzel-Apel AR, Günther C, Terhaer P, Bader H (1993) Computer-assisted analysis of motility, velocity and linearity of dog spermatozoa. J Reprod Fert Suppl 47:271–278Google Scholar
  15. 15.
    Holt WV, Watson P, Curry M, Holt C (1994) Reproducibility of computer-aided semen analysis: comparison of five different systems used in a practical workshop. Fertil Steril 62:1277–1282Google Scholar
  16. 16.
    Iguer-Ouada M, Verstengen JP (2001a) Validation of the sperm quality analyzer (SQA) for dog sperm analysis. Theriogenology 55:1143–1158Google Scholar
  17. 17.
    Iguer-Ouada M, Verstengen JP (2001b) Evaluation of the “Hamilton Thorn computer-based automated system” for dog semen analysis. Theriologenology 55:733–749Google Scholar
  18. 18.
    Jeyendran RS, Van der Ven HH, Zaneveld LJ (1992) The hypoosmotic swelling test: an update. Arch Androl 39:1279–1289Google Scholar
  19. 19.
    Karu T (1998a) The science of lower-power laser therapy. Gordon and Breach, Amsterdam, The NetherlandsGoogle Scholar
  20. 20.
    Karu T (1998b) The science of lower-power laser therapy. Gordon and Breach, Amsterdam, The Netherlands, pp 53–73Google Scholar
  21. 21.
    Kumi-Diaka J (1993) Subjecting canine semen to the hypo-osmotic test. Theriogenology 39:1279–1289Google Scholar
  22. 22.
    Kumi-Diaka J, Badtram G (1994) Effect of storage on sperm membrane integrity and other functional characteristics of canine spermatozoa: in vitro bioassay for canine semen. Theriogenology 41:1355–1366Google Scholar
  23. 23.
    Lubart R, Breitbart H, Sofer Y, Cohen N, Friedmann H, Lavie R (2003) Light irradiation of sperm cells stimulates in-vitro fertilization. In: Proceedings of the joint international laser conference, Edinburgh, Scotland, 21–23 September 2003Google Scholar
  24. 24.
    Marín ML, Velez JR (1990) Efectos de la irradiación laser Heio Neon en semen Bovino. [Tesina de Licenciatura]. Antioquia, Medellín. Facultad de Medicina Veterinaria y de Zootecnia, Universidad de Antioquia, ColumbiaGoogle Scholar
  25. 25.
    Marín S, Chiang K, Bassilian S, Lee WNP, Boros LG, Fernández-Novell JM, Centelles JJ, Medrano A, Rodríguez-Gil JE, Cascante M (2003) Metabolic strategy of boar spermatozoa revealed by a metabolomic characterization. FEBS Lett 554:342–346Google Scholar
  26. 26.
    Mushayandebvu T, Magier S, Murnick D, Bonder E, Weiss G, Colon J (1995) Sperm membrane response to hypo-osmotic challenge after laser optical trapping at high power. J Soci Gynecol Invest 2(2):370Google Scholar
  27. 27.
    Noll F (1984) L-lactate. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 4. Verlag Chemie, Weinheim, Germany, pp 582–592Google Scholar
  28. 28.
    Rigau J (1996) Acción de la luz Láser a baja intensidad en la modulación de la función celular. [Tesis doctoral]. Reus (Tarragona) Universitat Rovira i Virgili, SpainGoogle Scholar
  29. 29.
    Rigau T, Piedrafita J, Reverter A, Canal M, Rodríguez-Gil JE (1996) The rate of L-lactate production: a feasible parameter for the fresh diluted boar semen quality analysis. Anim Reprod Sci 43:161–172Google Scholar
  30. 30.
    Rigau T, Farré M, Ballester J, Mogas T, Peña A, Rodriguez-Gil JE (2001) Effects of glucose and fructose on motility patterns of dog spermatozoa from fresh ejaculates. Theriogenology 56:801–815Google Scholar
  31. 31.
    Rigau T, Rivera M, Palomo MJ, Mogas T, Ballester J, Peña A, Otaegui PJ, Guinovart JJ, Rodríguez-Gil JE (2002) Differential effects of glucose and fructose on hexose metabolism in dog spermatozoa. Reproduction 123:579–591Google Scholar
  32. 32.
    Rivera del Álamo MM (2003) Efecto del fotoperíodo sobre la calidad seminal de verracos destinados a inseminación artificial. [Tesis doctoral]. Bellaterra (Barcelona): UAB, Spain, junio 2003, pp 14–15Google Scholar
  33. 33.
    Rodríguez-Gil JE, Rigau T (1995) Effects of slight agitation on the quality of refrigerated boar semen. Anim Reprod Sci 39:141–146Google Scholar
  34. 34.
    Rodríguez-Gil JE, Rigau T (1996) Effects of ouabain on the response to osmotic changes in dog and boar spermatozoa. Theriogenology 45:873–888Google Scholar
  35. 35.
    Rodríguez-Gil JE, Montserrat A, Rigau T (1994) Effects of hypoosmotic incubation on acrosome and tail structure on canine spermatozoa. Theriogenology 42:815–829Google Scholar
  36. 36.
    Roldan ERS (1998) Signal transduction during mammalian sperm acrosomal exocytosis. In: Lauria A, Gandolfi F, Enne G, Gianaroli L (ed) Gametes: development and function. Serono Symposia, Rome, Italy, pp 219–228Google Scholar
  37. 37.
    Rossato M, Di Virgilio F, Rizzuto R, Galeazzi G, Foresta C (2001) Intracellular calcium store depletion and acrosome reaction in human spermatozoa: role of calcium and plasma membrane potential. Mol Hum Reprod 7(2):119–128Google Scholar
  38. 38.
    Troiano L, Granata AR, Cossarizza A, Kalshnikova G, Bianchi R, Pini G, Tropea F, Carani C, Franceschi C (1998) Mitochondrial membrane potential and DNA stainability in human sperm cells, a flow cytometry analysis with implications for male infertility. Exp Cell Res 241: 384–393Google Scholar
  39. 39.
    Tunér J, Hode L (1999) Low level laser therapy: clinical practice and scientific background. Prima Books, Grängesberg, Sweden, pp 90–92Google Scholar
  40. 40.
    Tunér J, Hode L (2002a) Laser therapy: clinical practice and scientific background. Prima Books, Grängesberg, Sweden, pp 95–97Google Scholar
  41. 41.
    Tunér J, Hode L (2002b) Laser therapy: clinical practice and scientific background. Prima Books, Grängesberg, Sweden, pp 68–69Google Scholar
  42. 42.
    Zaneveld LJD, Polakoski KL (1977) Collection and physical examination of the ejaculate. In: Hafez ESE (ed) Techniques of human andrology, chap 9. Elsevier/North-Holland Biomedical Press, Amsterdam, The NetherlandsGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2005

Authors and Affiliations

  • M. I. Corral-Baqués
    • 1
    • 3
    • 3
  • T. Rigau
    • 2
  • M. Rivera
    • 2
  • J. E. Rodríguez
    • 2
  • J. Rigau
    • 1
  1. 1.Department of Basic Medical Sciences, Faculty of Medicine and Health SciencesRovira i Virgili UniversityReusSpain
  2. 2.Animal Reproduction Unit, Faculty of Veterinary MedicineAutonomous University of BarcelonaBellaterraSpain
  3. 3.Unitat de Reproducció Animal, Departament de Medicina i Cirurgia Animal, Facultat de Medicina VeterinàriaUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations