Lasers in Medical Science

, Volume 19, Issue 3, pp 155–160 | Cite as

Transmission of Q-switched erbium:YSGG (λ=2.79 μm) and erbium:YAG (λ=2.94 μm) laser radiation through germanium oxide and sapphire optical fibres at high pulse energies

  • Nathaniel M. Fried
  • Yubing Yang
  • Charles A. Chaney
  • Daniel Fried
Original Article

Abstract

The erbium:YSGG and erbium:YAG lasers are used for tissue ablation in dermatology, dentistry and ophthalmology. The purpose of this study was to compare germanium oxide and sapphire optical fibres for transmission of sufficient Q-switched erbium laser pulse energies for potential use in both soft and hard tissue ablation applications. Fibre transmission studies were conducted with Q-switched (500 ns) Er:YSGG (λ=2.79 μm) and Er:YAG (λ=2.94 μm) laser pulses delivered at 3 Hz through 1-m-long, 450-μm germanium oxide and 425-μm sapphire optical fibres. Transmission of free-running (300 μs) Er:YSGG and Er:YAG laser pulses was also conducted for comparison. Each set of measurements was carried out on seven different sapphire or germanium fibres, and the data were then averaged. Fibre attenuation of Q-switched Er:YSGG laser energy measured 1.3±0.1 dB/m and 1.0±0.2 dB/m for the germanium and sapphire fibres, respectively. Attenuation of Q-switched Er:YAG laser energy measured 0.9±0.3 dB/m and 0.6±0.2 dB/m, respectively. A maximum Q-switched Er:YSGG pulse energy of 42 mJ (26–30 J/cm2) was transmitted through the fibres. However, fibre tip damage was observed at energies exceeding 25 mJ (n=2). Both germanium oxide and sapphire optical fibres transmitted sufficient Q-switched Er:YSGG and Er:YAG laser radiation for use in both soft and hard tissue ablation. This is the first report of germanium and sapphire fibre optic transmission of Q-switched erbium laser energies of 25–42 mJ per pulse.

Keywords

Erbium Er:YAG Er:YSGG Germanium Q-switched Sapphire 

References

  1. 1.
    Ren Q, Venugopalan V, Schomacker K, Deutsch TF, Flotte TJ, Puliafito CA, Birngruber R (1992) Midinfrared laser ablation of the cornea—a comparative study. Lasers Surg Med 12:274–281PubMedGoogle Scholar
  2. 2.
    Frenz M, Pratisto H, Konz F, Jansen ED, Welch AJ, Weber HP (1996) Comparison of the effects of absorption coefficient and pulse duration of 2.12-mm and 2.79-mm radiation on laser ablation of tissue. IEEE J Quant Electron 32:2025–2036CrossRefGoogle Scholar
  3. 3.
    Kampmeier J, Schafer S, Lang GE, Lang GK (1999) Comparison of free-running vs. Q-switched Er:YAG laser photorefractive keratectomy (scanning mode) in swine eyes. J Refract Surg 15:563–571PubMedGoogle Scholar
  4. 4.
    Jelinkova H, Pasta J, Nemec M, Sulc J, Miyagi M, Shi YW, Matsuura Y, Jelinek M (2003) Different influence of long and short mid-infrared laser pulse on eye tissue. Laser Phys 13:735–742Google Scholar
  5. 5.
    De Souza RF, Seitz B, Langenbucher A, Hofmann-Rummelt C, Schlotzer-Schrehardt U, Viestenz A, Kuchle M, Naumann GO (2003) Q-switched 2.94-microm Er:YAG laser trephination with convergent and divergent cut angles for penetrating keratoplasty. Cornea 22:562–568CrossRefPubMedGoogle Scholar
  6. 6.
    Stojkovic M, Kuchle M, Seitz B, Langenbucher A, Viestenz A, Viestenz A, Hofmann-Rummelt C, Schlotzer-Schrehardt U, Nuamann GOH (2003) Nonmechanical Q-switched Erbium:YAG laser trephination for penetrating keratoplasty. Arch Ophthalmol 121:1415–1422CrossRefPubMedGoogle Scholar
  7. 7.
    Fried D, Ragadio J, Champion A (2001) Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm. Lasers Surg Med 29:221–229CrossRefPubMedGoogle Scholar
  8. 8.
    Fried D, Ashouri N, Breunig T, Shori R (2002) Mechanism of water augmentation during IR laser ablation of dental enamel. Lasers Surg Med 31:186–193CrossRefPubMedGoogle Scholar
  9. 9.
    Fried D, Shori R (1998) Q-switched Er:YAG ablation of dental hard tissue. In: Proceedings of 6th International Congress on Lasers in Dentistry, pp 77–79Google Scholar
  10. 10.
    Fried D, Shori RK, Duhn CW (1998) Backspallation due to ablative recoil generated during Q-switched Er:YAG ablation of dental enamel. Proc SPIE 3248:78–85CrossRefGoogle Scholar
  11. 11.
    Walsh JT Jr, Flotte TJ, Deutsch TF (1989) Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage. Lasers Surg Med 9:314–326PubMedGoogle Scholar
  12. 12.
    Fried NM, Fried D (2001) Comparison of Er:YAG and 9.6-μm TE CO2 lasers for ablation of skull tissue. Lasers Surg Med 28:335–343CrossRefPubMedGoogle Scholar
  13. 13.
    Harrington JA (2004). Infrared fibers and their applications, SPIE Press, BellinghamGoogle Scholar
  14. 14.
    Jundt DH, Fejer MM, Byer RL (1989) Characterization of single-crystal sapphire fibers for optical power delivery systems. Appl Phys Lett 55:2170–2172CrossRefGoogle Scholar
  15. 15.
    Merberg GN, Harrington JA (1993) Optical and mechanical properties of single-crystal sapphire fibers. Appl Opt 32:3201–3209Google Scholar
  16. 16.
    Waynant RW, Oshry S, Fink M (1993) Infrared measurements of sapphire fibers for medical applications. Appl Opt 32:390–392Google Scholar
  17. 17.
    Merberg GN (1993) Current status of infrared fiber optics for medical power delivery. Lasers Surg Med 13:572–576PubMedGoogle Scholar
  18. 18.
    Chang RSF, Phomsakha V, Djeu N (1995) Recent advances in sapphire fibers. Proc SPIE 2396:48–53Google Scholar
  19. 19.
    Clarke GM, Chadwick D, Nubling RK, Harrington JA (1995) Sapphire fibers for three micron delivery systems. Proc SPIE 2396:54–59Google Scholar
  20. 20.
    Pryshlak AP, Dugan JR, Fitzgibbon JJ (1996) Advancements in sapphire optical fibers for the delivery of erbium laser energy and IR sensor applications. Proc SPIE 2677:35–42CrossRefGoogle Scholar
  21. 21.
    Nubling RK, Harrington JA (1997) Optical properties of single-crystal sapphire fibers. Appl Opt 36:5934–5940Google Scholar
  22. 22.
    Nubling RK, Harrington JA (1998). Single-crystal laser-heated pedestal-growth sapphire fibers for Er:YAG laser power delivery. Appl Opt 37:4777–4781Google Scholar
  23. 23.
    Papagiakoumou E, Papadopoulos DN, Anastasopoulou N, Serafetinides AA (2003) Comparative evaluation of HP oxide glass fibers for Q-switched and free-running Er:YAG laser beam propagation. Opt Commun 220:151–160CrossRefGoogle Scholar
  24. 24.
    Papagiakoumou EI, Klinkenberg B, Serafetinides AA (2003) Determination of the maximum capabilities of high-power oxide glass fibers in the mid-infrared for medical applications. Proc SPIE 5143:289–299CrossRefGoogle Scholar
  25. 25.
    Papadopoulos DN, Papagiakoumou E, Serafetinides AA (2002) Q-switched Er:YAG radiation transmission through an oxide glass fiber for medical applications. Proc SPIE 4916:415–422CrossRefGoogle Scholar
  26. 26.
    Papagiakoumou EI, Papadopoulos DN, Serafetinides AA (2003) Q-switched Er:YAG radiation transmission through medical sapphire fibers. Proc SPIE 5131:314–318CrossRefGoogle Scholar
  27. 27.
    Serafetinides AA, Alexander A, Fabrikesi, Eugenia T, Chourdakis, Anastasopoulou AA, Nikoletta (1999) Pulsed HF and Er:YAG laser radiation transmission through sapphire and fluoride glass fibers. Proc SPIE 3570:28–35CrossRefGoogle Scholar
  28. 28.
    Levin K, Tran D, Tchapnijkov A, Fried NM (2004). Specialty fiber expands infrared laser applications. Biophoton Int 11:41–43Google Scholar
  29. 29.
    Fried NM, Yang Y, Chaney CA, Fried D (2004). Transmission of free-running and q-switched erbium:YSGG laser radiation through sapphire and germanium fibers. Proc SPIE 5317:9–12CrossRefGoogle Scholar
  30. 30.
    Anastasopoulou N, Ziolek C, Serafetinides AA, Lubatschowski H (2000) Q-switched Er:YAG radiation transmission through fluoride glass fibers and dielectric metallic hollow waveguides. Opt Commun 186:167–171CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2004

Authors and Affiliations

  • Nathaniel M. Fried
    • 1
  • Yubing Yang
    • 1
  • Charles A. Chaney
    • 1
  • Daniel Fried
    • 2
  1. 1.Department of UrologyJohns Hopkins Medical InstitutionsBaltimoreUSA
  2. 2.Department of Restorative DentistryUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations