Strategic simulation models as a new methodological approach: an application to information technologies integration, lean/just-in-time and lead-time

  • Luciano NovaisEmail author
  • Juan Manuel Maqueira
  • Ángel Ortiz
  • Sebastián Bruque
S.I. : CIO-2018


Hypothesis contrast using statistical models with Structural Equations is a technique widely used in Supply Chain Management research. However, this technique provides a static vision of the observed reality, as a snapshot of that reality at a specific moment in time. In the Supply Chain Management context, dynamic analyses are also necessary to visualize the business behaviour in different scenarios projected in the future. These dynamic analyses can be performed using System Dynamics Models. Strategic simulation emerges for this purpose, as a new path that allows for prospective strategic analysis. This paper presents a methodological proposal to carry out simulations at a strategic level, using the complementarity between Structural Equation Models and System Dynamics Models. This proposal is illustrated by two applications: first, to the case of Community Cloud use, Supply Chain Integration and their impacts on operational performance; second, to the specific case of information technology integration and lean/just-in-time practices on lead-time performance.


Methodological proposal Structural equation models System dynamics models Information technology integration Just-in-time Lead-time 



This research has been developed thanks to the support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) of Brazil and the Spanish Ministry of Economy and Competitiveness Research Project ECO2015-65874-P.


  1. Acar M, Tarim M, Zaim H, Zaim S, Delen D (2017) Knowledge management and ERP: complementary or contradictory? Int J Inf Manage 37(6):703–712CrossRefGoogle Scholar
  2. Amand G, Ward P (2004) Fit, flexibility and performance in manufacturing: coping with dynamic environments. Prod Oper Manage 13(4):369–385CrossRefGoogle Scholar
  3. Bois FY, Maszle DR (1997) MCSim: a Monte Carlo simulation program. J Stat Softw 2:1–60CrossRefGoogle Scholar
  4. Bruque S, Moyano J, Maqueira JM (2016) Supply chain integration through community cloud: effects on operational performance. J Purch Supply Manag 22(2):141–153CrossRefGoogle Scholar
  5. Cagliano R, Caniato F, Spina G (2006) The linkage between supply chain integration and manufacturing improvement programmes. Int J Oper Prod Manag 26(3):282–299CrossRefGoogle Scholar
  6. Campuzano F, Mula J (2011) Supply chain simulation: a system dynamics approach for improving performance. Springer, LondonCrossRefGoogle Scholar
  7. Campuzano F, Mula J, Peidro D (2010a) Fuzzy estimations and system dynamics for improving supply chains. Fuzzy Sets Syst 161:1530–1542CrossRefGoogle Scholar
  8. Campuzano F, Martínez E, Ros L (2010b) Cadenas de suministro tradicionales y colaborativas: análisis de su influencia en la gestión de la variabilidad de la demanda. Dyna 8(1):33–40Google Scholar
  9. Chen CS, Liang WY, Hsu HY (2015) A cloud computing platform for ERP applications. Appl Soft Comput 27:127–136CrossRefGoogle Scholar
  10. Chiu PC, Liao AYH, Liao CH, Yango YN (2013) Cloud-based supply chain integration service platform. J Electron Sci Technol 11(2):201–208Google Scholar
  11. Cook T, Campbell D (1979) Quasi-experimentation: design and analysis issues for field settings. Houghton Mifflin, BostonGoogle Scholar
  12. Forrester JW (1961) Industrial dynamics. Pegasus Communications, WalthamGoogle Scholar
  13. Frazelle E (2001) Supply chain strategy: the logistics of supply chain management, 2nd edn. McGraw-Hill Professional, New YorkGoogle Scholar
  14. Gerbin D, Hamilton J (1996) Viability of exploratory factor analysis as a precursor to confirmatory factor analysis. Struct Equ Model 3(1):62–72CrossRefGoogle Scholar
  15. Gorsuch R (1983) Factor analysis, 2nd edn. Erlbaum, HillsdaleGoogle Scholar
  16. Gunasekarana A, Laib K, Chenge T (2008) Responsive supply chain: a competitive strategy in a networked economy. Omega 36(1):549–564CrossRefGoogle Scholar
  17. Hair J, Anderson R, Tatham R, Black W (2001) Análisis Multivariante, 5ª edn. Prentice Hall, MadridGoogle Scholar
  18. Hair JF, Black WC, Babin BJ, Anderson RE (2009) Multivariate data analysis. Prentice Hall, New JerseyGoogle Scholar
  19. Helo PT (2000) Dynamic modelling of surge effect and capacity limitation in supply chains. Int J Prod Res 38:4521–4533CrossRefGoogle Scholar
  20. Kaplan D (2000) Structural equation modelling: foundations and extensions. Sage, Newbury ParkGoogle Scholar
  21. Kline R (2005) Principles and practice of structural equation modelling. Gilford Press, New YorkGoogle Scholar
  22. Lee H (2017) Framework and development of fault detection classification using IoT device and cloud environment. J Manuf Syst 43(2):257–270CrossRefGoogle Scholar
  23. Leukel J, Kirn S, Schlegel T (2011) Supply chain as a service: a cloud perspective on supply chain systems. Syst J 5(1):16–27Google Scholar
  24. Li G, Yang H, Sun L, Sohal AS (2009) The impact of IT implementation on supply chain integration and performance. Int J Prod Econ 120(1):125–138CrossRefGoogle Scholar
  25. Li W, Zhong Y, Wang X, Cao Y (2013) Resource virtualization and service selection in cloud logistic. J Netw Comput Appl 36(6):1696–1704CrossRefGoogle Scholar
  26. Liu S, Yang Y, Qu WG, Liu Y (2016) The business value of cloud computing: the partnering agility perspective. Ind Manag Data Syst 116(6):1160–1177CrossRefGoogle Scholar
  27. McAfee A (2002) The impact of enterprise information technology adoption on operational performance: an empirical investigation. Prod Oper Manag 11(1):33–53CrossRefGoogle Scholar
  28. McCormack K, Ladeira MB, Oliveira MPV (2008) Supply chain maturity and performance in Brazil. Supply Chain Manag Int J 13(4):272–282CrossRefGoogle Scholar
  29. Moyano-Fuentes J, Martínez-Jurado PJ, Maqueira-Marín JM, Bruque-Cámara S (2012) El papel de las tecnologías de la información and las comunicaciones (TIC) en la búsqueda de la eficiencia: un análisis desde Lean Production and la integración electrónica de la cadena de suministro. Cuadernos de Economía and Dirección de la Empresa 15(3):105–116CrossRefGoogle Scholar
  30. Ouyang LY, Wu KS, Ho CH (2007) An integrated vendor–buyer inventory model with quality improvement and lead time reduction. Eur J Oper Res 108:349–358Google Scholar
  31. Qureshi MI, Iftikhar M, Bhatti MN, Shams T, Zaman K (2013) Critical elements in implementations of just-in-time management: empirical study of cement industry in Pakistan. SpringerPlus 2(645):1–14Google Scholar
  32. Rai A, Patnayakuni R, Seth N (2006) Firm performance impacts of digitally enabled supply chain integration capabilities. MIS Q 30(2):225–246CrossRefGoogle Scholar
  33. Raubenheimer JE (2004) An item selection procedure to maximize scale reliability and validity. South African J Psychol 30(4):59–64Google Scholar
  34. Romano P (2003) Co-ordination and integration mechanisms to manage logistics processes across supply markets. J Purch Supply Manag 9(3):119–134CrossRefGoogle Scholar
  35. Satorra A (1993) Multi-sample analysis of moment-structures: asymptotic validity of inferences based on second order moments. In: Haagen K, Bartholomeusz A, Deistler M (eds) Statistical modelling and latent variables. Elsevier, AmsterdamGoogle Scholar
  36. Schniederjans DG, Hales DN (2016) Cloud Computing and its impact on economic and environmental performance: a transaction cost economics perspective. Decis Support Syst 86:73–82CrossRefGoogle Scholar
  37. Schniederjans DG, Ozpolat K, Chen Y (2016) Humanitarian supply chain use of cloud computing. Supply Chain Manag Int J 21(5):569–588CrossRefGoogle Scholar
  38. Shah R, Ward PT (2003) Lean manufacturing: context, practice bundles and performance. J Oper Manag 21(2):129–149CrossRefGoogle Scholar
  39. Sterman J (2000) Business dynamics: systems thinking and modelling for a complex world. Irwin/McGraw-Hill, New YorkGoogle Scholar
  40. Subramanian N, Abdulrahman MD, Zhou X (2015) Reprint of integration of logistics and cloud computing service providers: cost and green benefits in the Chinese context. Transp Res 74:81–93Google Scholar
  41. Treville S, Shapiro R, Hameri AP (2004) From supply chain to demand chain: the role of lead time reduction in improving demand chain performance. J Oper Manag 21:613–627CrossRefGoogle Scholar
  42. Ward P, Zhou H (2006) Impact of information technology integration and lean/just-in-time practices on lead-time performance. Decis Sci 37(2):177–203CrossRefGoogle Scholar
  43. Waters D (2007) Global logistics: new directions in supply chain management, 5a edn. Kogan Page Publishers, LondonGoogle Scholar
  44. Womack JP, Jones DT, Ross D (1990) The machine that changed the, world edn. MacMillan/Rawson Associates, Nueva YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Centre for Management and Production Engineering, Ciudad Politécnica de la InnovaciónPolytechnic University of ValenciaValenciaSpain
  2. 2.Business Organization, Marketing and Sociology DepartmentJaén UniversityLinaresSpain

Personalised recommendations