An impossibility theorem for paired comparisons

  • László CsatóEmail author
Original Paper


In several decision-making problems, alternatives should be ranked on the basis of paired comparisons between them. We present an axiomatic approach for the universal ranking problem with arbitrary preference intensities, incomplete and multiple comparisons. In particular, two basic properties—independence of irrelevant matches and self-consistency—are considered. It is revealed that there exists no ranking method satisfying both requirements at the same time. The impossibility result holds under various restrictions on the set of ranking problems, however, it does not emerge in the case of round-robin tournaments. An interesting and more general possibility result is obtained by restricting the domain of independence of irrelevant matches through the concept of macrovertex.


Preference aggregation Paired comparison Tournament ranking Axiomatic approach Impossibility 

Mathematics Subject Classification

15A06 91B14 



We thank Sándor Bozóki for useful advice. Anonymous reviewers provided valuable comments and suggestions on earlier drafts. The research was supported by OTKA grant K 111797 and by the MTA Premium Post Doctorate Research Program.


  1. Altman A, Tennenholtz M (2008) Axiomatic foundations for ranking systems. J Artif Intell Res 31(1):473–495CrossRefGoogle Scholar
  2. Bouyssou D (1992) Ranking methods based on valued preference relations: a characterization of the net flow method. Eur J Oper Res 60(1):61–67CrossRefGoogle Scholar
  3. Bozóki S, Csató L, Temesi J (2016) An application of incomplete pairwise comparison matrices for ranking top tennis players. Eur J Oper Res 248(1):211–218CrossRefGoogle Scholar
  4. Bozóki S, Fülöp J, Rónyai L (2010) On optimal completion of incomplete pairwise comparison matrices. Math Comput Modell 52(1–2):318–333CrossRefGoogle Scholar
  5. Chao X, Kou G, Li T, Peng Y (2018) Jie Ke versus AlphaGo: a ranking approach using decision making method for large-scale data with incomplete information. Eur J Oper Res 265(1):239–247CrossRefGoogle Scholar
  6. Chebotarev P (1989) Generalization of the row sum method for incomplete paired comparisons. Autom Remote Control 50(8):1103–1113Google Scholar
  7. Chebotarev P (1994) Aggregation of preferences by the generalized row sum method. Math Soc Sci 27(3):293–320CrossRefGoogle Scholar
  8. Chebotarev P, Shamis E (1997) Constructing an objective function for aggregating incomplete preferences. In: Tangian A, Gruber J (eds) Constructing scalar-valued objective functions, vol 453. Lecture notes in economics and mathematical systems. Berlin, Springer, pp 100–124CrossRefGoogle Scholar
  9. Chebotarev P, Shamis E (1998) Characterizations of scoring methods for preference aggregation. Ann Oper Res 80:299–332CrossRefGoogle Scholar
  10. Chebotarev P, Shamis E (1999) Preference fusion when the number of alternatives exceeds two: indirect scoring procedures. J Frankl Inst 336(2):205–226CrossRefGoogle Scholar
  11. Csató L (2013) Ranking by pairwise comparisons for Swiss-system tournaments. Central Eur J Oper Res 21(4):783–803CrossRefGoogle Scholar
  12. Csató L (2015) A graph interpretation of the least squares ranking method. Soc Choice Welfare 44(1):51–69CrossRefGoogle Scholar
  13. Csató L (2017) On the ranking of a Swiss system chess team tournament. Ann Oper Res 254(1–2):17–36CrossRefGoogle Scholar
  14. Csató L (2018a) Some impossibilities of ranking in generalized tournaments. Manuscript. arXiv 1701:06539Google Scholar
  15. Csató L (2018b) Was Zidane honest or well-informed? How UEFA barely avoided a serious scandal. Econ Bull 38(1):152–158Google Scholar
  16. González-Díaz J, Hendrickx R, Lohmann E (2014) Paired comparisons analysis: an axiomatic approach to ranking methods. Soc Choice Welfare 42(1):139–169CrossRefGoogle Scholar
  17. Hansson B, Sahlquist H (1976) A proof technique for social choice with variable electorate. J Econ Theory 13(2):193–200CrossRefGoogle Scholar
  18. Henriet D (1985) The Copeland choice function: an axiomatic characterization. Soc Choice Welfare 2(1):49–63CrossRefGoogle Scholar
  19. Horst P (1932) A method for determining the absolute affective value of a series of stimulus situations. J Edu Psychol 23(6):418–440CrossRefGoogle Scholar
  20. Kaiser HF, Serlin RC (1978) Contributions to the method of paired comparisons. Appl Psychol Meas 2(3):423–432CrossRefGoogle Scholar
  21. Landau E (1895) Zur relativen Wertbemessung der Turnierresultate. Deutsches Wochenschach 11:366–369Google Scholar
  22. Landau E (1914) Über Preisverteilung bei Spielturnieren. Z r Math Phys 63:192–202Google Scholar
  23. Nitzan S, Rubinstein A (1981) A further characterization of Borda ranking method. Public Choice 36(1):153–158CrossRefGoogle Scholar
  24. Radicchi F (2011) Who is the best player ever? A complex network analysis of the history of professional tennis. PloS ONE 6(2):e17249CrossRefGoogle Scholar
  25. Rubinstein A (1980) Ranking the participants in a tournament. SIAM J Appl Math 38(1):108–111CrossRefGoogle Scholar
  26. Thurstone LL (1927) A law of comparative judgment. Psychol Rev 34(4):273–286CrossRefGoogle Scholar
  27. Young HP (1974) An axiomatization of Borda’s rule. J Econ Theory 9(1):43–52CrossRefGoogle Scholar
  28. Zermelo E (1929) Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung. Math Z 29:436–460CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory on Engineering and Management Intelligence, Research Group of Operations Research and Decision Systems, Institute for Computer Science and ControlHungarian Academy of Sciences (MTA SZTAKI)BudapestHungary
  2. 2.Department of Operations Research and Actuarial SciencesCorvinus University of Budapest (BCE)BudapestHungary

Personalised recommendations