Advertisement

Bounded directional distance function models

  • Jesus T. Pastor
  • Juan Aparicio
  • Javier Alcaraz
  • Fernando Vidal
  • Diego Pastor
Original Paper

Abstract

Bounded additive models in data envelopment analysis (DEA) under the assumption of constant returns to scale (CRS) were recently introduced in the literature (Cooper et al. in J Product Anal 35(2):85–94, 2011; Pastor et al. in J Product Anal 40:285–292, 2013; Pastor et al. in Omega 56:16–24, 2015). In this paper, we propose to extend the so far generated knowledge about bounded additive models to the family of directional distance function (DDF) models in DEA, giving rise to a completely new subfamily of bounded or partially-bounded CRS-DDF models. We finally check the new approach on a real agricultural panel data set estimating efficiency and productivity change over time, resorting to the Luenberger indicator in a context where at least one variable is naturally bounded.

Keywords

Data envelopment analysis Directional distance functions Bounded or partially-bounded DEA CRS-models 

Notes

Acknowledgements

We thank the guest editors of the special issue DEA 2017 and two anonymous referees for providing constructive comments and help in improving the contents and presentation of this paper. Additionally, J.T. Pastor, J. Aparicio, J. Alcaraz and F. Vidal thank the financial support from the Spanish Ministry for Economy and Competitiveness (Ministerio de Economía, Industria y Competitividad), the State Research Agency (Agencia Estatal de Investigacion) and the European Regional Development Fund (Fondo Europeo de DEsarrollo Regional) under Grant MTM2016-79765-P (AEI/FEDER, UE).

References

  1. Ali AI, Seiford LM (1993) The mathematical programming approach to efficiency analysis. In: Fried H, Lovell CAK, Schmidt SS (eds) The measurement of productive efficiency: techniques and applications. Oxford University Press, Inc, OxfordGoogle Scholar
  2. Balk B (2001) Scale efficiency and productivity change. J Prod Anal 15:159–183CrossRefGoogle Scholar
  3. Briec W, Kerstens K (2009a) Infeasibility and directional distance functions with application of determinateness of the Luenberger productivity indicator. J Optim Theory Appl 141:55–73CrossRefGoogle Scholar
  4. Briec W, Kerstens K (2009b) The Luenberger productivity indicator: an economic specification leading to infeasibilities. Econ Model 26:597–600CrossRefGoogle Scholar
  5. Caves DW, Christensen LR, Diewert WE (1982) The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica 50:1393–1414CrossRefGoogle Scholar
  6. Chambers RG, Chung Y, Färe R (1996a) Benefit and distance functions. J Econ Theory 70:407–419CrossRefGoogle Scholar
  7. Chambers RG, Färe R, Grosskopf S (1996b) Productivity growth in APEC countries. Pac Econ Rev 1:181–190CrossRefGoogle Scholar
  8. Chambers RG, Chung Y, Färe R (1998) Profit, directional distance functions, and Nerlovian efficiency. J Optim Theory Appl 98(2):351–364CrossRefGoogle Scholar
  9. Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2:429–444CrossRefGoogle Scholar
  10. Cooper WW, Park KS, Pastor JT (1999) RAM: a range adjusted measure of inefficiency for use with additive models, and relations to others models and measures in DEA. J Prod Anal 11:5–42CrossRefGoogle Scholar
  11. Cooper WW, Pastor JT, Borras F, Aparicio J, Pastor D (2011) BAM: a bounded adjusted measure of efficiency for use with bounded additive models. J Prod Anal 35(2):85–94CrossRefGoogle Scholar
  12. Färe R, Grosskopf S (2010) Directional distance functions and slacks-based measures of efficiency. Eur J Oper Res 200:320–322CrossRefGoogle Scholar
  13. Färe R, Grosskopf S, Lindgren B, Roos P (1992) Productivity changes in swedish pharmacies 1980–1989: a non-parametric malmquist approach. J Prod Anal 3:85–101CrossRefGoogle Scholar
  14. Grifell-Tatjé E, Lovell CAK (1995) A note on the malmquist productivity index. Econ Lett 47:169–175CrossRefGoogle Scholar
  15. Hollingsworth B, Smith P (2003) Use of ratios in data envelopment analysis. Appl Econ Lett 10:733–735CrossRefGoogle Scholar
  16. Kapelko M, Horta IM, Camanho AS, Oude Lansink A (2015) Measurement of input specific productivity growth with an application to the construction industry in Spain and Portugal. Int J Prod Econ 166:64–71CrossRefGoogle Scholar
  17. Koopmans TC (1951) Analysis of production as an efficient combination of activities. In: Koopmans TC (ed) Activity analysis of production and allocation. Wiley, New YorkGoogle Scholar
  18. Liu JS, Lu LYY, Lu W-M, Lin BJY (2013) Data envelopment analysis 1978–2010: a citation-based literature survey. Omega 41:3–15CrossRefGoogle Scholar
  19. Lovell CAK (2003) The decomposition of Malmquist productivity indexes. J Prod Anal 20:437–458CrossRefGoogle Scholar
  20. Luenberger DG (1992) New optimality principles for economic efficiency and equilibrium. J Optim Theory Appl 75(2):221–264CrossRefGoogle Scholar
  21. MAGRAMA (2016) Estadisticas. Producciones Agricolas. Ministerio de Agricultura, Alimentacion y Medio Ambiente. http://www.magrama.gob.es/es/agricultura/estadisticas/. Accessed 28 Dec 2016 (in Spanish)
  22. Olesen OB, Petersen NC, Podinovski VV (2015) Efficiency analysis with ratio measures. Eur J Oper Res 245(2):446–462CrossRefGoogle Scholar
  23. Pastor JT, Aparicio J, Monge JF, Pastor D (2013) Modeling CRS bounded additive DEA models and characterizing their Pareto-efficient points. J Prod Anal 40:285–292CrossRefGoogle Scholar
  24. Pastor JT, Del Campo FJ, Vidal F, Pastor D (2014) Efficiency in attracting tourists via the Web—an application to the Mediterranean countries. Tour Econ 20(1):195–202CrossRefGoogle Scholar
  25. Pastor JT, Aparicio J, Alcaraz J, Vidal F, Pastor D (2015) An enhanced BAM for unbounded or partially bounded CRS additive models. Omega 56:16–24CrossRefGoogle Scholar
  26. Rashidi K, Saen RF (2015) Measuring eco-efficiency based on green indicators and potentials in energy saving and undesirable output abatement. Energy Econ 50:18–26CrossRefGoogle Scholar
  27. Ray SC, Desli E (1997) Productivity growth, technical progress, and efficiency change in industrialized countries. Am Econ Rev 87:1033–1039Google Scholar
  28. Shephard RW (1953) Cost and production functions. Princeton University Press, PrincetonGoogle Scholar
  29. Toloo M, Tavana M, Santos-Arteaga FJ (2017) An integrated data envelopment analysis and mixed integer non-linear programming model for linearizing the common set of weights. CEJOR.  https://doi.org/10.1007/s10100-017-0510-y Google Scholar
  30. Toloo M, Nalchigar S, Sohrabi B (2018) Selecting most efficient information system projects in presence of user subjective opinions: a DEA approach. CEJOR.  https://doi.org/10.1007/s10100-018-0549-4 Google Scholar
  31. Vidal F, Pastor JT, Borras F, Pastor D (2013) Efficiency analysis of the designations of origin in the Spanish wine sector. Span J Agri Res 11(2):294–304CrossRefGoogle Scholar
  32. Vidal F, Aparicio J, Pastor JT, Pastor D (2014) Las Denominaciones de Origen de aceite de oliva virgen en España. Un analisis de su eficiencia tecnica. ITEA 2:208–222 (in Spanish) Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Operations Research (CIO), University Miguel Hernandez of Elche (UMH)Elche, AlicanteSpain
  2. 2.Environmental Economics DepartmentUniversity Miguel Hernandez of Elche (UMH)Orihuela (Alicante)Spain
  3. 3.Physical and Sports EducationUniversity Miguel Hernandez of Elche (UMH)Elche, AlicanteSpain

Personalised recommendations