Advertisement

Vehicle routing problems with time windows and multiple service workers: a systematic comparison between ACO and GRASP

  • Gerald Senarclens de Grancy
  • Marc Reimann
Original Paper

Abstract

This paper systematically compares an ant colony optimization (ACO) and a greedy randomized adaptive search procedure (GRASP) metaheuristic. Both are used to solve the vehicle routing problem with time windows and multiple service workers. In order to keep the results comparable, the same route construction heuristic and local search procedures are used. It is shown that ACO clearly outperforms GRASP in the problem under study. Additionally, new globally best results for the used benchmark problems are presented.

Keywords

Vehicle routing Time windows Local search Ant colony optimization GRASP Metaheuristics 

References

  1. Belfiore PP, Fávero LPL (2007) Scatter search for the fleet size and mix vehicle routing problem with time windows. Cent Eur J Operations Res 15(4):351–368. ISSN:1435-246X. doi: 10.1007/s10100-007-0036-9
  2. Bräysy O, Gendreau M (2005a) Vehicle routing problem with time windows, Part I: route construction and local search algorithms. Transp Sci 39(1):104–118. ISSN: 1526-5447. doi: 10.1287/trsc.1030.0056 Google Scholar
  3. Bräysy O, Gendreau M (2005b) Vehicle routing problem with time windows, Part II: metaheuristics. Transp Sci 39(1):119–139. ISSN: 1526-5447. doi: 10.1287/trsc.1030.0057 Google Scholar
  4. Clarke G, Wright JW (1964) Scheduling of vehicles from a central depot to a number of delivery points. Oper Res 12.4:568–581Google Scholar
  5. Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Actes de la premi‘ere conférence européenne sur la vie artificielle. Elsevier, Amsterdam, pp 134–142Google Scholar
  6. Dantzig GB, Ramser JH (1959) The truck dispatching problem. Manag Sci 6:80–91Google Scholar
  7. Dorigo M (1992) Optimization, learning and natural algorithms. PhD thesis. Politecnico di MilanoGoogle Scholar
  8. Feo TA, Resende MGC (1989) A probabilistic heuristic for a computationally difficult set covering problem. Oper Res Lett 8.2:67–71. ISSN: 0167-6377. doi: 10.1016/0167-6377(89)90002-3
  9. Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Glob Optim 6:109–133Google Scholar
  10. Fleurent C, Glover F (1999) Improved constructive multistart strategies for the quadratic assignment problem using adaptive memory. INFORMS J Comput 11.2:198–204Google Scholar
  11. Golden BL, Wasil EA (1987) Computerized vehicle routing in the soft drink industry. Oper Res 35.1:6. ISSN: 0030364XGoogle Scholar
  12. Lourenço HR, Martin OC, Stützle T (2002) Iterated local search. In: Glover F, Kochenberger G (eds) Handbook of metaheuristics, volume 57 of international series in operations research and management science. Kluwer, pp 321–353Google Scholar
  13. Pureza V, Morabito R, Reimann M (2011) Vehicle routing with multiple deliverymen: modeling and heuristic approaches for the VRPTW. Eur J Oper Res 218.3:636–647. ISSN: 0377-2217. doi: 10.1016/j.ejor.2011.12.005
  14. Reimann M, Dörner K, Hartl R (2002) Insertion based ants for vehicle routing problems with backhauls and time windows. In: Proceedings of the third international workshop on ant algorithms. ANTS ’02. Springer, London, UK, pp 135–148. ISBN: 3-540-44146-8Google Scholar
  15. Reimann M, Dörner K, Hartl R (2004) D-Ants: savings based ants divide and conquer the vehicle routing problem. Comput Oper Res 31:563–591Google Scholar
  16. Salehipour A, Sörensen K, Goos P, Bräysy O (2011) Efficient GRASP+VND and GRASP+VNS metaheuristics for the traveling repairman problem. 4OR 9(2):189–209. ISSN: 1619-4500. doi: 10.1007/s10288-011-0153-0 Google Scholar
  17. Solomon MM (1987) Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper Res 35.2:254–265. doi: 10.1287/opre.35.2.254
  18. Tange O (2011) GNU Parallel—the command-line power tool. In: login: the USENIX magazine, vol 36.1, pp 42–47. http://www.gnu.org/s/parallel
  19. Thompson PM, Psaraftis HN (1993) Cyclic transfer algorithms for multivehicle routing and scheduling problems. Oper Res 41.5:935–946. ISSN: 0030-364X. doi: 10.1287/opre.41.5.935
  20. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometr Bull 1.6:80–83. doi: 10.2307/3001968
  21. World Bank (2010) Population in Urban agglomerations of more than 1 Million. Internet resource. Accessed 2012-01-10. http://data.worldbank.org/indicator/EN.URB.MCTY.TL.ZS/countries?display=graph

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Production and Operations ManagementUniversity of GrazGrazAustria
  2. 2.Institute of Production and Operations ManagementUniversity of GrazGrazAustria

Personalised recommendations