Central European Journal of Operations Research

, Volume 20, Issue 3, pp 485–495 | Cite as

On the convergence to Walrasian prices in random matching Edgeworthian economies

  • A. A. Pinto
  • M. Ferreira
  • B. F. Finkenstädt
  • B. Oliveira
  • A. N. Yannacopoulos
Original Paper
  • 62 Downloads

Abstract

We show that for a specific class of random matching Edgeworthian economies, the expectation of the limiting equilibrium price coincides with the equilibrium price of the related Walrasian economies. This result extends to the study of economies in the presence of uncertainty within the multi-period Arrow-Debreu model, allowing to understand the dynamics of how beliefs survive and propagate through the market.

Keywords

Random matching economies Edgeworthian economies 

Mathematics Subject Classification (2000)

91B26 91B50 91B68 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliprantis CD, Brown DJ, Burkinshaw O (1987) Edgeworth equilibria. Econometrica 55: 1109–1137CrossRefGoogle Scholar
  2. Aumann R (1987) Correlated equilibrium as an expression of Bayesian rationality. Econometrica 55: 1–18CrossRefGoogle Scholar
  3. Aumann R, Shapley L (1974) Values of non atomic games. Princeton University Press, Princeton, NJGoogle Scholar
  4. Binmore K, Herrero M (1988) Matching and bargaining in dynamic markets. Rev Econ Stud 55: 17–31CrossRefGoogle Scholar
  5. Edgeworth FY (1881) Mathematical psychics: An essay on the application of mathematics to the moral sciences. Kegan Paul, LondonGoogle Scholar
  6. Gale D (2000) Strategic foundations of perfect competition. Cambridge University Press, Cambridge, MAGoogle Scholar
  7. Lloyd PJ (2001) The origins of the von Thünen-Mill-Pareto- Wicksell-Cobb-Douglas function. Hist Political Econ 33: 1–19CrossRefGoogle Scholar
  8. MasColell A (1989) An equivalence theorem for a bargaining set. J Math Econ 18: 129–139CrossRefGoogle Scholar
  9. McLennan A, Schonnenschein H (1991) Sequential bargaining as a non cooperative foundation for Walrasian equilibria. Econometrica 59: 1395–1424CrossRefGoogle Scholar
  10. Pinto AA (2010) Game theory and duopoly models, interdisciplinary applied mathematics. Springer, BerlinGoogle Scholar
  11. Pinto AA, Yannacopoulos AN (2011) Generalized convergence to Walrasian prices, working paperGoogle Scholar
  12. Rubinstein A, Wolinsky A (1990) Decentralized trading, strategic behaviour and the Walrasian outcome. Rev Econ Stud 57: 63–78CrossRefGoogle Scholar
  13. Shubik M (1959) Edgeworth’s market games. In: Luce RD, Tucker AW (eds) Contributions to the theory of games IV. Princeton University Press, Princeton, NJGoogle Scholar
  14. Voorneveld M (2008) From preferences to Cobb-Douglas utility, SSE/EFI Working Paper Series in Economics and Finance No. 701Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. A. Pinto
    • 1
    • 2
  • M. Ferreira
    • 1
    • 3
  • B. F. Finkenstädt
    • 5
  • B. Oliveira
    • 1
    • 4
  • A. N. Yannacopoulos
    • 6
  1. 1.LIAAD—INESC LAPortoPortugal
  2. 2.Departamento de Matemática, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  3. 3.ESEIG, Instituto Politécnico do PortoPortoPortugal
  4. 4.Faculdade de Ciências da Nutriçáo e AlimentaçáoUniversidade do PortoPortoPortugal
  5. 5.Department of StatisticsUniversity of WarwickCoventryUK
  6. 6.Department of StatisticsAthens University of Economics and BusinessAthensGreece

Personalised recommendations