Advertisement

Central European Journal of Operations Research

, Volume 20, Issue 4, pp 679–717 | Cite as

Clustered enhanced differential evolution for the blocking flow shop scheduling problem

  • Donald Davendra
  • Ivan Zelinka
  • Magdalena Bialic-Davendra
  • Roman Senkerik
  • Roman Jasek
Original Paper

Abstract

A novel clustered population paradigm is presented in this paper which is based on Chaos principles of edges and attractors. Convergence in evolutionary algorithms is viewed as a manifestation through cyclic dynamics and thus a new population is developed which is clustered and separated through new segregation bias rules. This population is embedded on the Enhanced Differential Evolution and the flow shop scheduling problem with blocking is solved. The two flow shop benchmark problems of Rec/Car/Hel and Taillard are solved with this new approach and the results favorably compared with published results in literature. A total of 49 new upper bounds for the Taillard problems was obtained during experimentation.

Keywords

Differential Evolution Flow shop Scheduling with Blocking Scheduling Evolutionary Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aihara K, Takabe T, Toyoda M (1990) Chaotic neural networks. Phys Lett A 6: 333–340CrossRefGoogle Scholar
  2. Beasley J (2009) Operations reserach library. http://people.brunel.ac.uk/~mastjjb/jeb/info.htm
  3. Caraffa V, Ianes S, Bagchi TP, Sriskandarajah C (2001) Minimizing makespan in a blocking flowshop using genetic algorithms. Int J Prod Econ 70(2): 101–115. doi: 10.1016/S0925-5273(99)00104-8 CrossRefGoogle Scholar
  4. Carlier J (1978) Ordonnancements a contraintes disjonctives. Oper Res 12: 333–351Google Scholar
  5. Chakraborty U (2008) Advances in differential evolution. Springer, GermanyCrossRefGoogle Scholar
  6. Davendra D (2010) Evolutionary algorithms and the edge of chaos. In: Zelinka I, Celikovsky S, Richter H, Chen G (eds) Evolutionary algorithms and chaotic systems. Springer, Germany, pp 145–161CrossRefGoogle Scholar
  7. Davendra D, Onwubolu G (2007a) Enhanced differential evolution hybrid scatter search for discrete optimisation. In: Proceedings of the IEEE congress on evolutionary computation. Singapore, pp 1156–1162Google Scholar
  8. Davendra D, Onwubolu G (2007b) Flow shop scheduling using enhanced differential evolution. In: Proceedings of 21 European conference on modeling and simulation, Prague, Czech Republic, pp 259–264Google Scholar
  9. Davendra D, Onwubolu G (2009) Forward backward transformation. In: Onwubolu G, Davendra D (eds) Differential evolution: a handbook for global permutation-based combinatorial optimization. Springer, GermanyGoogle Scholar
  10. Gleick J (1987) Chaos: making a new science. Vintage, USAGoogle Scholar
  11. Glover F, Laguna M, Martí R (2000) Fundamentals of scatter search and path relinking. Control Cybern 39: 653–684Google Scholar
  12. Grabowski J, Pempera J (2007) The permutation flow shop problem with blocking. A tabu search approach. Omega 35(3): 302–311. doi: 10.1016/j.omega.2005.07.004 CrossRefGoogle Scholar
  13. Hall NG, Sriskandarajah C (1996) A survey of machine scheduling problems with blocking and no-wait in process. Oper Res 44(3): 510–525CrossRefGoogle Scholar
  14. Heller J (1960) Some numerical experiments for an mj flow shop and its decision-theoretical aspects. Oper Res 8: 178–184CrossRefGoogle Scholar
  15. Ikeguchi T, Horio Y (1999) Chaos for avoiding local minima. A mutual connection neural network dynamics. Technical report, Tokyo University of ScienceGoogle Scholar
  16. Ishi S, Sato M (1997) Chaotic potts spin model for combinatorial optimization problems. Neural Netw 10: 941–963CrossRefGoogle Scholar
  17. Kauffman S (1991) Antichaos and adaptation. Scientific American, USA, pp 78–84Google Scholar
  18. Lampinen J, Zelinka I (2000) On stagnation of the differential evolution algorithm http://www.citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.35.7932
  19. Langton C (1990) Computation at the edge of chaos: phase transitions and emergent computation. Physica D 42: 12–37CrossRefGoogle Scholar
  20. May R (2001) Stability and complexity in model ecosystems. Princeton University Press, PrincetonGoogle Scholar
  21. Nawaz M, Enscore E, Ham I (1983) A heuristic algorithm for the m-machine, n-job flowshop sequencing problem. OMEGA Int J Manag Sci 11: 91–95CrossRefGoogle Scholar
  22. Nozawa H (1992) Chaos 2. Physics D 2: 377Google Scholar
  23. Onwubolu G (2005) Optimization using differential evolution. In: Technical Report TR-2001-05, IAS, USP, FijiGoogle Scholar
  24. Onwubolu G, Davendra D (2006) Scheduling flow shops using differential evolution algorithm. Eur J Oper Res 171: 674–679CrossRefGoogle Scholar
  25. Onwubolu G, Davendra D (2009) Differential evolution: a handbook for global permutation-based combinatorial optimization. Springer, GermanyCrossRefGoogle Scholar
  26. Pan QK, Suganthan PN, Wang L, Gao L, Mallipeddi R (2011) A differential evolution algorithm with self-adapting strategy and control parameters. Comput Oper Res 38: 394–408CrossRefGoogle Scholar
  27. Ponnambalam S, Aravindan P, Chandrasekhar S (2001) Constructive and improvement flow shop scheduling heuristic: an extensive evaluation. Prod Plan Control 12: 335–344CrossRefGoogle Scholar
  28. Price K (1999) An introduction to differential evolution. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimisation. McGraw Hill, International, UKGoogle Scholar
  29. Price K, Storn R, Lampinen J (2005) Differential evolution. Springer, GermanyGoogle Scholar
  30. Qian B, Wang L, Huang DX, Wang X (2009) An effective hybrid de-based algorithm for flow shop scheduling with limited buffers. Int J Prod Res 47Google Scholar
  31. Reeves C (1995) A genetic algorithm for flowshop sequencing. Comput Oper Res 22: 5–13CrossRefGoogle Scholar
  32. Ronconi DP (2005) A branch-and-bound algorithm to minimize the makespan in a flowshop with blocking. Ann OR 138(1): 53–65CrossRefGoogle Scholar
  33. Storn R (1999) System design by constraint adaptation and differential evolution. IEEE Trans Evol Comput 3(1): 22–34CrossRefGoogle Scholar
  34. Storn R (2009) Differential evolution homepage. http://www.ICSI.Berkeley.edu/~storn/code.html
  35. Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res 64: 278–285CrossRefGoogle Scholar
  36. Wang L, Pan QK, Suganthan P, Wang WH, Wang YM (2010) A novel hybrid discrete differential evolution algorithm for blocking flow shop scheduling problems. Comput Oper Res 37(3): 509–520. doi: 10.1016/j.cor.2008.12.004 CrossRefGoogle Scholar
  37. Yamada T, Aihara K (1997) Nonlinear neurodynamics and combinatorial optimization in chaotic neural networks. J Intell Fuzzy Syst 5: 53–68Google Scholar
  38. Zhang J, Sanderson AC (2009) Jade: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13: 945–958CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Donald Davendra
    • 1
  • Ivan Zelinka
    • 1
  • Magdalena Bialic-Davendra
    • 2
  • Roman Senkerik
    • 2
  • Roman Jasek
    • 2
  1. 1.Faculty of Electrical Engineering and Computing ScienceTechnical University of OstravaOstravaCzech Republic
  2. 2.Tomas Bata University in ZlinZlinCzech Republic

Personalised recommendations