Central European Journal of Operations Research

, Volume 18, Issue 4, pp 437–451 | Cite as

Gustav Feichtinger celebrates his 70th birthday

  • Herbert Dawid
  • Engelbert Dockner
  • Richard F. Hartl
  • Josef Haunschmied
  • Ulrike Leopold-Wildburger
  • Mikulas Luptacik
  • Alexander Mehlmann
  • Alexia Prskawetz
  • Marion Rauner
  • Gerhard Sorger
  • Gernot Tragler
  • Vladimir M. VeliovEmail author
  • Franz Wirl


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almeder C, Caulkins JP, Feichtinger G, Tragler G (2001) Age-specific multi-state initiation models: insights from considering heterogeneity. Bull Narc LIII 1(2): 105–118Google Scholar
  2. 2.
    Almeder C, Caulkins JP, Feichtinger G, Tragler G (2004) An age-structured single-state drug initiation model—cycles of drug epidemics and optimal prevention programs. Socioecon Plann Sci 38: 91–109CrossRefGoogle Scholar
  3. 3.
    Almeder C, Feichtinger G, Sanderson WC, Veliov VM (2007) Prevention and medication of HIV/AIDS—the case of Botswana. Central Eur J Oper Res 15: 47–61CrossRefGoogle Scholar
  4. 4.
    Behrens DA, Caulkins JP, Feichtinger G, Tragler G (2007) Incentive stackelberg strategies for a dynamic game on terrorism. In: Jorgensen S, Quincampoix M, Vincent TL (eds) Advances in dynamic game theory: numerical methods, algorithms, and applications to ecology and economics. Birkhuser, Basel, pp 459–486Google Scholar
  5. 5.
    Behrens DA, Caulkins JP, Tragler G, Feichtinger G (2000) Optimal control of drug epidemics: prevent and treat—but not at the same time. Manag Sci 46(3): 333–347CrossRefGoogle Scholar
  6. 6.
    Behrens DA, Caulkins JP, Tragler G, Feichtinger G (2002) Why present-oriented societies undergo cycles of drug epidemics. J Econ Dyn Control 26: 919–936CrossRefGoogle Scholar
  7. 7.
    Behrens DA, Caulkins JP, Tragler G, Feichtinger G, Haunschmied JL (1999) A dynamic model of drug initiation: implications for treatment and drug control. Math Biosci 159: 1–20CrossRefGoogle Scholar
  8. 8.
    Bultmann R, Caulkins JP, Feichtinger G, Tragler G (2008) How should drug policy respond to market disruptions?. Contemp Drug Probl 35: 371–395Google Scholar
  9. 9.
    Bultmann R, Caulkins JP, Feichtinger G, Tragler G (2008) Modeling supply shocks in optimal control models of illicit drug consumption. In: Lirkov I, Margenov S, Wasniewski J (eds) Large-scale scientific computing. Springer, Heidelberg, pp 285–292CrossRefGoogle Scholar
  10. 10.
    Bultmann R, Feichtinger G, Tragler G (2010) Stochastic Skiba sets: an example from models of illicit drug consumption. In: Lirkov I, Margenov S, Wasniewski J (eds) Large-scale scientific computing. Springer, Heidelberg, pp 239–246CrossRefGoogle Scholar
  11. 11.
    Caulkins JP, Feichtinger G, Gavrila C, Greiner A, Haunschmied JL, Kort P, Tragler G (2006) Dynamic cost-benefit analysis of drug substitution programs. J Optim Theory Appl 128: 279–294CrossRefGoogle Scholar
  12. 12.
    Caulkins JP, Feichtinger G, Grass D, Johnson M, Tragler G, Yegorov Y (2005) Placing the poor while keeping the rich in their place: separating strategies for optimally managing residential mobility and assimilation. Demogr Res 13: 1–34CrossRefGoogle Scholar
  13. 13.
    Caulkins JP, Feichtinger G, Grass D, Tragler G (2009) Optimal control of terrorism and global reputation: a case study with novel threshold behavior. Oper Res Lett 37(6): 387–391CrossRefGoogle Scholar
  14. 14.
    Caulkins JP, Feichtinger G, Haunschmied JL, Tragler G (2006) Quality cycles and the strategic manipulation of value. Oper Res 54(4): 666–677CrossRefGoogle Scholar
  15. 15.
    Caulkins JP, Feichtinger G, Johnson M, Tragler G, Yegorov Y (2005) Skiba thresholds in a model of controlled migration. J Econ Behav Organ 57: 490–508CrossRefGoogle Scholar
  16. 16.
    Caulkins JP, Grass D, Feichtinger G, Tragler G (2008) Optimizing counter-terror operations: should one fight fire with “fire” or “water”?. Comput Oper Res 35: 1874–1885CrossRefGoogle Scholar
  17. 17.
    Dawid H, Feichtinger G (1996) Optimal allocation of drug control efforts: a differential game analysis. J Optim Theory Appl 91: 279–297CrossRefGoogle Scholar
  18. 18.
    Dawid H, Feichtinger G, Goldstein JR, Veliov VM (2009) Keeping a learned society young. Demogr Res 20(22): 541–558CrossRefGoogle Scholar
  19. 19.
    Dawid H, Feichtinger G, Jørgensen SJ (2000) Crime and law enforcement: a multistage game. In: Filar JA, Gaitsgory V, Mizukami K (eds) Advances in dynamic games and applications. Birkhäuser, Boston, pp 341–351Google Scholar
  20. 20.
    Dawid H, Feichtinger G, Novak A, Wirl F (1997) Indeterminacy of open-loop Nash equilibria: the ruling class versus the tabloid press. In: Natke HG, Ben-Haim Y (eds) Uncertainty: models and measures. Akademie, Berlin, pp 124–136Google Scholar
  21. 21.
    Dawid H, Feichtinger G, Novak A (2002) Extortion as an obstacle to economic growth: a dynamic game analysis. Eur J Polit Econ 18: 499–516CrossRefGoogle Scholar
  22. 22.
    Deissenberg C, Feichtinger G, Semmler W, Wirl F (2004) Multiple equilibria, history dependency, and global dynamics in intertemporal optimization models. In: Barnett WA (eds) Economic complexity: non-linear dynamics, multi-agents economies, and learning. North Holland, Amsterdam, pp 91–122Google Scholar
  23. 23.
    Deistler M, Feichtinger G, Luptacik M, Wörgötter A (1978) Optimales Wachstum stabiler Bevölkerungen in einem neoklassischen Modell. Zeitschrift für Bevölkerungswissenschaft 1: 63–73Google Scholar
  24. 24.
    Dockner EJ, Feichtinger G (1984) A note to Jorgensen’s logarithmic advertising differential game. Zeitschrift für Oper Res 28: B 133–B 153Google Scholar
  25. 25.
    Dockner EJ, Feichtinger G (1985) Optimal pricing in a duopoly: a noncooperative differential games solution. J Optim Theory Appl 45: 199–218CrossRefGoogle Scholar
  26. 26.
    Dockner EJ, Feichtinger G (1986) Dynamic advertising and pricing in an oligopoly: a Nash equilibrium approach. J Econ Dyn Control 10: 37–39CrossRefGoogle Scholar
  27. 27.
    Dockner EJ, Feichtinger G (1992) Does society gain from the actions of environmentalists? Forschungsbericht 143 des Instituts für Ökonometrie. OR und Systemtheorie, TU WienGoogle Scholar
  28. 28.
    Dockner EJ, Feichtinger G (1993) Cyclical consumption patterns and rational addiction. Am Econ Rev 83: 256–263Google Scholar
  29. 29.
    Dockner EJ, Feichtinger G, Jorgensen S (1985) Tractable classes of nonzero-sum open-loop Nash differential games: theory and examples. J Optim Theory Appl 45: 179–197CrossRefGoogle Scholar
  30. 30.
    Dockner EJ, Feichtinger G, Mehlmann A (1989) Noncooperative solutions for a differential game model of fishery. J Econ Dyn Control 13: 1–20CrossRefGoogle Scholar
  31. 31.
    Dockner EJ, Feichtinger G, Mehlmann A (1993) Dynamic R&D competition with memory. J Evol Econ 3: 145–152CrossRefGoogle Scholar
  32. 32.
    Dockner EJ, Feichtinger G, Novak A (1991) Cyclical production and marketing decisions: application of Hopf bifurcation theory. Int J Syst Sci 22: 1035–1046CrossRefGoogle Scholar
  33. 33.
    Feichtinger G (1971) Stochastische Modelle demographischer Prozesse. Lecture Notes in Operations Research and Mathematical Systems, Vol. 44, Springer, BerlinGoogle Scholar
  34. 34.
    Feichtinger G (1972) Stochastische Dekrementmodelle der Bevölkerungsstatistik. Biometrische Zeitschrift 14: 106–125CrossRefGoogle Scholar
  35. 35.
    Feichtinger G (1973) Markovian models for some demographic processes. Statistische Hefte 4: 311–334Google Scholar
  36. 36.
    Feichtinger G (1973) Bevölkerungsstatistik. de Gruyter, BerlinGoogle Scholar
  37. 37.
    Feichtinger G (1976) Are economically dependent groups likely to become a significant larger proportion of the population as a whole? In: Proceedings of the colloque on the changing population structures in Europe and rising social costs, council of Europe, StrasbourgGoogle Scholar
  38. 38.
    Feichtinger G (1976) Some economic consequences of declining fertility in the Federal Republic of Germany. In: Les methodes d’Analyse en Demographie Economique, Dossiers et recherches 1, Institut National d’Etudes Demographiques, ParisGoogle Scholar
  39. 39.
    Feichtinger G (1976) On the generalization of stable age distributions to Gani-type manpower models. Adv Appl Probab 8: 433–445CrossRefGoogle Scholar
  40. 40.
    Feichtinger G (1977) Stationäre und schrumpfende Bevölkerungen. Demographisches Null- und Negativwachstum in Österreich. Lecture notes in economics and mathematical systems, vol 149. Springer, BerlinGoogle Scholar
  41. 41.
    Feichtinger G (1977) Ursachen und Konsequenzen des Geburtenrückganges. In: Soziale Probleme der modernen Industriegesellschaft, Arbeitstagung des Vereins für Socialpolitik in Augsburg, Duncker & Humblot, Berlin, pp 393–434Google Scholar
  42. 42.
    Feichtinger G (1977) Methodische Probleme der Familienlebenszyklus-Statistik. In: Albach H, Helmstädterund RH (eds) Qantiative Wirtschaftsforschung, Wilhelm Krelle zum 60. Geburtstag, Mohr, TübingenGoogle Scholar
  43. 43.
    Feichtinger G (1979) Demographische Analyse und populationsdynamische Modelle: Grundzüge der Bevölkerungsmathematik. Springer, WienGoogle Scholar
  44. 44.
    Feichtinger G (1981) Nash-Lösungen zustandsseparabler Nichtnullsummen Differentialspiele. Forschungsbericht 41 des Instituts für Ökonometrie. OR und Systemtheorie, TU WienGoogle Scholar
  45. 45.
    Feichtinger G (1982) Saddle-point analysis in a price-advertising model. J Econ Dyn Control 4: 319–340CrossRefGoogle Scholar
  46. 46.
    Feichtinger G (1982) Optimal pricing in a diffusion model with nonlinear price-dependent market potential. Oper Res Lett 1: 236–240CrossRefGoogle Scholar
  47. 47.
    Feichtinger G (1982) Ein Differentialspiel für den Markteintritt einer Firma. In: Fleischmann B (eds) et al Operations research proceedings 1981. Springer, Berlin, pp 636–644Google Scholar
  48. 48.
    Feichtinger G (1982) Optimal repair policy for a machine service problem. Optim Control Appl Methods 3: 15–22CrossRefGoogle Scholar
  49. 49.
    Feichtinger G (1982) The nash solution of a maintenance-production differential game. Eur J Oper Res 10: 165–172CrossRefGoogle Scholar
  50. 50.
    Feichtinger G (1983) Optimale dynamische Preispolitik bei drohender Konkurrenz. Zeitschrift für Betriebswirtschaft 53: 155–177Google Scholar
  51. 51.
    Feichtinger G (1983) The Nash solution of an advertising differential game: Generalization of a model by Leitmann and Schmitendorf. IEEE Trans Autom Control AC-28: 1044–1048CrossRefGoogle Scholar
  52. 52.
    Feichtinger G (1983) A differential games solution to a model of competition between a thief and the police. Manag Sci 29: 686–699CrossRefGoogle Scholar
  53. 53.
    Feichtinger G (1985) Optimal modification of machine reliability by maintenance and production. OR-Spektrum 7: 43–50CrossRefGoogle Scholar
  54. 54.
    Feichtinger G (1992) Hopf bifurcation in an advertising diffusion model. J Econ Behav Organ 17: 401–411CrossRefGoogle Scholar
  55. 55.
    Feichtinger G (1996) Chaos theory in operations research. Int Trans Oper Res 3: 23–36CrossRefGoogle Scholar
  56. 56.
    Feichtinger G, Behrens D, Prskawetz A (1997) Complex dynamics and control of arms race. Eur J Oper Res 100: 192–215CrossRefGoogle Scholar
  57. 57.
    Feichtinger G, Dawid H (1995) Complex optimal policies in an advertising diffusion model. Chaos Solitons Fractals 5: 45–53CrossRefGoogle Scholar
  58. 58.
    Feichtinger G, Dawid H (1995) Optimal policies in an advertising diffusion model. Chaos Solitons Fractals 5: 45–53CrossRefGoogle Scholar
  59. 59.
    Feichtinger G, Dawid H, Kopel M (1997) Complex solutions of nonconcave dynamic optimization models. Econ Theory 9: 427–439CrossRefGoogle Scholar
  60. 60.
    Feichtinger G, Dawid H, Kopel M (1998) Periodic and chaotic programs of intertemporal optimization models with non-concave net benefit function. J Econ Behav Organ 33: 435–447CrossRefGoogle Scholar
  61. 61.
    Feichtinger G, Dawid H, Novak A, Wirl F (1997) Indeterminacy of open-loop nash equilibria: the ruling class versus the Tabloid Press. In: Natke HG, Ben-Haim Y (eds) Uncertainty: models and measures. Akademie Verlag, Germany, pp 124–136Google Scholar
  62. 62.
    Feichtinger G, Dawid H, Tragler G (1994) Optimal resource exploitation may be chaotic. Central Eur J Oper Res Econ 3: 111–122Google Scholar
  63. 63.
    Feichtinger G, Dockner EJ (1990) Capital accumulation, endogenous population growth, and Easterlin cycles. J Popul Econ 3: 73–87CrossRefGoogle Scholar
  64. 64.
    Feichtinger G, Ghezzi LL, Piccardi C (1995) Chaotic behavior in an advertising diffusion model. Int J Bifurcat Chaos 5: 255–263CrossRefGoogle Scholar
  65. 65.
    Feichtinger G, Grienauer W, Tragler G (2002) Optimal dynamic law enforcement. Eur J Oper Res 141: 58–69CrossRefGoogle Scholar
  66. 66.
    Feichtinger G, Hartl RF (1981) Ein nichtlineares Kontrollproblem der Instandhaltung. OR-Spektrum 3: 49–58CrossRefGoogle Scholar
  67. 67.
    Feichtinger G, Hartl RF (1985) Optimal pricing and production in an inventory model. Eur J Oper Res 19: 45–56CrossRefGoogle Scholar
  68. 68.
    Feichtinger G, Hartl RF (1986) Optimale Kontrolle ökonomischer Prozesse: Anwendungen des Maximumprinzips in den Wirtschaftswissenschaften. deGruyter, BerlinGoogle Scholar
  69. 69.
    Feichtinger G, Hartl RF (1987) A new sufficient condition for most rapid approach paths. J Optim Theory Appl 54: 403–411CrossRefGoogle Scholar
  70. 70.
    Feichtinger G, Hartl RF, Kort P, Wirl F (2001) The dynamics of a simple relative adjustment-cost framework. Ger Econ Rev 2: 255–268CrossRefGoogle Scholar
  71. 71.
    Feichtinger G, Hartl RF, Kort PM, Veliov VM (2005) Environmental policy, the Porter hypothesis and the composition of capital: effects of learning and technological progress. J Environ Econ Manag 50: 434–446CrossRefGoogle Scholar
  72. 72.
    Feichtinger G, Hartl RF, Kort PM, Veliov VM (2006) Anticipation effects of technological progress on capital accumulation: a vintage capital approach. J Econ Theory 126: 143–164CrossRefGoogle Scholar
  73. 73.
    Feichtinger G, Hartl RF, Kort PM, Veliov VM (2008) Financially constrained capital investments: the effects of disembodied and embodied technological progress. J Math Econ 44: 459–483Google Scholar
  74. 74.
    Feichtinger G, Hartl RF, Luhmer A, Sorger G, Steindl A (1988) ADPULS in continuous time. Eur J Oper Res 34: 171–177CrossRefGoogle Scholar
  75. 75.
    Feichtinger G, Hartl RF, Sethi SP (1994) Dynamic optimal control models in advertising: recent developments. Manag Sci 40: 195–226CrossRefGoogle Scholar
  76. 76.
    Feichtinger G, Hartl RF, Sorger G, Steindl A (1986) On the optimality of cyclical employment policies: a numerical investigation. J Econ Dyn Control 10: 457–466CrossRefGoogle Scholar
  77. 77.
    Feichtinger G, Hommes CH, Milik A (1994) Complex dynamics in a threshold advertising model. OR-Spektrum 16: 101–111CrossRefGoogle Scholar
  78. 78.
    Feichtinger G, Hommes CH, Milik A (1997) Chaotic consumption patterns in a simple 2-D addiction model. Econ Theory 10: 147–173CrossRefGoogle Scholar
  79. 79.
    Feichtinger G, Jorgensen S (1983) Differential game models in management science. Eur J Oper Res 14: 137–155CrossRefGoogle Scholar
  80. 80.
    Feichtinger G, Kopel M (1993) Chaos in nonlinear dynamical systems exemplified by an R&D model. Eur J Oper Res 6: 145–159CrossRefGoogle Scholar
  81. 81.
    Feichtinger G, Kopel M (1994) Nichtlineare dynamische Systeme und Chaos: Neue Impulse für die Betriebswirtschaftslehre?. Zeitschrift für Betriebswirtschaft 64: 7–34Google Scholar
  82. 82.
    Feichtinger G, Kopel M, Wirl F (1999) Threshold advertising rules in a duopoly framework. Central Eur J Oper Res 7: 39–52Google Scholar
  83. 83.
    Feichtinger G, Luhmer A, Sorger G (1988) Optimal price and advertising policy in convenience goods retailing. Mark Sci 7: 187–201CrossRefGoogle Scholar
  84. 84.
    Feichtinger G, Luptacik M (1987) Optimal production and abatement policies of a firm. Eur J Oper Res 29: 274–285CrossRefGoogle Scholar
  85. 85.
    Feichtinger G, Mehlmann A (1976) The recruitment trajectory corresponding to particular stock sequences in Markovian person-flow models. Math Oper Res 1: 175–184CrossRefGoogle Scholar
  86. 86.
    Feichtinger G, Novak A (1994) Optimal pulsing in an advertising diffusion model. Optim Control Appl Methods 15: 267–276CrossRefGoogle Scholar
  87. 87.
    Feichtinger G, Novak A (1994) Differential game model of the dynastic cycle: 3-D canonical system with a stable limit cycle. J Optim Theory Appl 80: 407–423CrossRefGoogle Scholar
  88. 88.
    Feichtinger G, Novak A, Wirl F (1994) Limit cycles in intertemporal adjustment models—theory and applications. J Econ Dyn Control 18: 353–380CrossRefGoogle Scholar
  89. 89.
    Feichtinger G, Prskawetz A (1992) Seltsames Verhalten nichtlinearer demographischer Prozesse. Acta Demogr 131–156Google Scholar
  90. 90.
    Feichtinger G, Prskawetz A, Veliov VM (2004) Age-structured optimal control in population economics. Theor Popul Biol 65: 373–387CrossRefGoogle Scholar
  91. 91.
    Feichtinger G, Rinaldi S, Wirl F (1998) Corruption dynamics in democratic systems. Complexity 5(3): 53–64Google Scholar
  92. 92.
    Feichtinger G, Sorger G (1986) Optimal oscillations in control models: how can constant demand lead to cyclical production?. Oper Res Lett 5: 277–281CrossRefGoogle Scholar
  93. 93.
    Feichtinger G, Sorger S (1987) Intertemporal sharecropping: a differential game approach. In: Bamberg G, Spremann K (eds) Agency theory, information and incentives. Springer, Berlin, pp 415–438Google Scholar
  94. 94.
    Feichtinger G, Sorger G (1989) Self-generated fertility waves in a non-linear continuous overlapping generations model. J Popul Econ 2: 267–280CrossRefGoogle Scholar
  95. 95.
    Feichtinger G, Tragler G, Veliov VM (2003) Optimality conditions for age-structured control systems. J Math Anal Appl 288(1): 47–68CrossRefGoogle Scholar
  96. 96.
    Feichtinger G, Tsachev T, Veliov VM (2004) Maximum principle for age and duration structured systems: a tool for optimal prevention and treatment of HIV. Math Popul Stud 11: 3–28CrossRefGoogle Scholar
  97. 97.
    Feichtinger G, Veliov VM (2007) On a distributed control problem arising in dynamic optimization of a fixed-size population. SIAM J Optim 18: 980–1003CrossRefGoogle Scholar
  98. 98.
    Feichtinger G, Vogelsang H (1978) Pseudostabile Bevölkerungen: Populationsdynamik bei gleichmäig sinkender Fertilität. Schriftenreihe des Instituts für Demographie der Österreichischen Akademie der Wissenschaften 4Google Scholar
  99. 99.
    Feichtinger G, Vogelsang H (1978) Zur demographischen Translation I. Beziehungen zwischen Perioden- und Kohortenmessung demographischer Prozesse. Forschungsbericht 12 des Instituts für Ökonometrie, OR und Systemtheorie, TU WienGoogle Scholar
  100. 100.
    Feichtinger G, Wirl F (1991) Politico-economic cycles of regulation and deregulation. Eur J Polit Econ 7: 469–485CrossRefGoogle Scholar
  101. 101.
    Feichtinger G, Wirl F (1993) A dynamic variant of the battle of the sexes. Int J Game Theory 22: 359–380CrossRefGoogle Scholar
  102. 102.
    Feichtinger G, Wirl F (1994) On the stability and potential cyclicity of corruption within Governments subject to popularity constraints. Math Soc Sci 28: 113–131CrossRefGoogle Scholar
  103. 103.
    Feichtinger G, Wirl F (2000) Instabilities in concave, dynamic, economic optimizations. J Optim Theory Appl 107: 57–68CrossRefGoogle Scholar
  104. 104.
    Fent T, Feichtinger G, Tragler G (2002) A dynamic game of offending and law enforcement. Int Game Theory Rev 4: 71–89CrossRefGoogle Scholar
  105. 105.
    Ghezzi LL, Feichtinger G, Piccardi C (1995) Chaotic behavior in an advertising diffusion model. Int J Bifurcat Chaos 5: 255–263CrossRefGoogle Scholar
  106. 106.
    Grass D, Caulkins JP, Feichtinger G, Tragler G, Behrens DA (2008) Optimal control of nonlinear processes: with applications in drugs, corruption, and terror. Springer, HeidelbergGoogle Scholar
  107. 107.
    Hartl R, Feichtinger G, Kort P, Wirl F (2004) Thresholds due to relative investment costs. J Optim Theory Appl 123: 49–82CrossRefGoogle Scholar
  108. 108.
    Haunschmied JL, Feichtinger G, Hartl RF, Kort P (2006) Keeping up with the technology pace: a DNS-curve in a limit cycle in a technology investment decision problem. J Econ Behav Organ 57: 509–529CrossRefGoogle Scholar
  109. 109.
    Haunschmied JL, Kort P, Hartl RF, Feichtinger G (2003) A DNS-curve in a two-state capital accumulation model: a numerical analysis. J Econ Dyn Control 27: 701–716CrossRefGoogle Scholar
  110. 110.
    Kuhn M, Prskawetz A, Wrzaczek S, Feichtinger G (2007) Health, survival and consumption over the life cyle: individual versus social optimum and the role of externalities. Rostocker Zentrum zur Erforschung des Demografischen Wandels. Diskussionspapier 16Google Scholar
  111. 111.
    Milik A, Prskawetz A, Feichtinger G, Sanderson W (1996) Slow-fast dynamics in wonderland. Environ Model Assess 1: 3–17CrossRefGoogle Scholar
  112. 112.
    Novak A, Feichtinger G, Leitmann G (2010) A differential game related to terrorism: Nash and Stackelberg strategies. J Optim Theory Appl 144(3): 533–555CrossRefGoogle Scholar
  113. 113.
    Prskawetz A, Feichtinger G, Wirl F (1994) Endogenous population growth and the exploitation of renewable resources. Math Popul Stud 5: 87–106CrossRefGoogle Scholar
  114. 114.
    Prskawetz A, Feichtinger G (1995) Endogenous population growth may imply chaos. J Popul Econ 8: 59–80CrossRefGoogle Scholar
  115. 115.
    Prskawetz A, Feichtinger G, Luptacik M, Milik A, Wirl F, Hof FX, Lutz W (1999) Endogenous growth of population and income depending on resource and knowledge. Eur J Popul 14: 305–331CrossRefGoogle Scholar
  116. 116.
    Prskawetz A, Winkler-Dworak M, Feichtinger G (2003) Production, distribution and insecurity of food: a dynamic framework. Struct Change Econ Dyn 14: 317–337CrossRefGoogle Scholar
  117. 117.
    Prskawetz A, Gragnani A, Feichtinger G (2003) Reconsidering the dynamic interaction of renewable resources and population growth: a focus on long-run sustainability. Environ Model Assess 8: 35–45CrossRefGoogle Scholar
  118. 118.
    Steinmann G, Prskawetz A, Feichtinger (1998) A model on the escape from the Malthusian trap. J Popul Econ 11: 535–550CrossRefGoogle Scholar
  119. 119.
    Tragler G, Caulkins JP, Feichtinger G (2001) Optimal dynamic allocation of treatment and enforcement in illicit drug control. Oper Res 49(3): 352–362CrossRefGoogle Scholar
  120. 120.
    Wirl F, Feichtinger G (1995) Persistent cyclical consumption. Variations on the becker-murphy model on addiction. Ration Soc 7: 156–166CrossRefGoogle Scholar
  121. 121.
    Wirl F, Feichtinger G (2002) Intrafamiliar consumption and saving under altruism and wealth considerations. Economica 69: 93–111CrossRefGoogle Scholar
  122. 122.
    Wirl F, Feichtinger G (2005) History dependence in concave economies. J Econ Behav Org 57: 390–407CrossRefGoogle Scholar
  123. 123.
    Wirl F, Feichtinger G (2006) History versus expectations: increasing returns or social influence?. J Socio Econ 35: 877–888CrossRefGoogle Scholar
  124. 124.
    Wirl F, Feichtinger G (2010) Modelling social dynamics (of obesity) and thresholds. MimeoGoogle Scholar
  125. 125.
    Wrzaczek S, Kuhn M, Prskawetz A, Feichtinger G (2010) The reproductive value in distributed optimal control models. Theor Popul Biol 77: 164–170CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Herbert Dawid
  • Engelbert Dockner
  • Richard F. Hartl
  • Josef Haunschmied
  • Ulrike Leopold-Wildburger
  • Mikulas Luptacik
  • Alexander Mehlmann
  • Alexia Prskawetz
  • Marion Rauner
  • Gerhard Sorger
  • Gernot Tragler
  • Vladimir M. Veliov
    • 1
    Email author
  • Franz Wirl
  1. 1.ORCOS, Vienna University of TechnologyViennaAustria

Personalised recommendations