Central European Journal of Operations Research

, Volume 19, Issue 4, pp 445–466 | Cite as

Similarities between meta-heuristics algorithms and the science of life

Original Paper


In this paper, we show the functional similarities between Meta-heuristics and the aspects of the science of life (biology): (a) Meta-heuristics based on gene transfer: Genetic algorithms (natural evolution of genes in an organic population), Transgenic Algorithm (transfers of genetic material to another cell that is not descending); (b) Meta-heuristics based on interactions among individual insects: Ant Colony Optimization (on interactions among individuals insects, Ant Colonies), Firefly algorithm (fireflies of the family Lampyridze), Marriage in honey bees Optimization algorithm (the process of reproduction of Honey Bees), Artificial Bee Colony algorithm (the process of recollection of Honey Bees); and (c) Meta-heuristics based on biological aspects of alive beings: Tabu Search Algorithm (Classical Conditioning on alive beings), Simulated Annealing algorithm (temperature control of spiders), Particle Swarm Optimization algorithm (social behavior and movement dynamics of birds and fish) and Artificial Immune System (immunological mechanism of the vertebrates).


Biological similarity Bio-inspired algorithms Meta-heuristic algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbass HA (2001) MBO: marriage in honey bees optimization-a haplometrosis polygynous swarming approach. Proc Congr Evolut Comput 1: 207–214. doi: 10.1109/CEC.2001.934391 Google Scholar
  2. Barricelli NA (1954) Esempi numerici di processi di evoluzione. Methodos 6(21–22): 45–68Google Scholar
  3. Boettcher S, Percus AG (1999) Extremal optimization: methods derived from co-evolution. Proc Genet Evolut Comput Conf 1: 825–832Google Scholar
  4. Brownlee J (2007) Optimization algorithm toolkit, http://optalgtoolkit.sourceforge.net. Accessed 29 January 2010
  5. Černý V (1985) A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. J Optim Theory Appl 45: 41–51. doi: 10.1007/BF00940812 CrossRefGoogle Scholar
  6. Cirasella J, Johnson DS, McGeoch LA, Zhang W (2001) The asymmetric traveling salesman problem: algorithms, instance generators, and tests. In: Buchsbaum AL, Snoeyink J (eds) Third international workshop. ALENEX 2001, Springer, New York. Lecture notes in computer science vol 2153, pp 32–59Google Scholar
  7. Cutello V, Narzisi G, Nicosia G, Pavone M (2005) Clonal selection algorithms: a comparative case study using effective mutation potentials, optIA versus CLONALG. In: 4th international conference on artificial immune systems-ICARIS 2005, Banff, Canada. Springer, New York. LNCS vol 3627, pp 13–28, 14–17Google Scholar
  8. Díaz-Parra O, Cruz-Chávez MA (2008) Evolutionary algorithm with intelligent mutation operator that solves the vehicle routing problem of clustered classification with time windows. Polish J Environ Stud 17(4C), Hard pp 91–95Google Scholar
  9. Dorigo M (1992) Optimization, learning and natural algorithms, Ph.D. thesis, Politecnico di Milano, ItalyGoogle Scholar
  10. Dorigo M (2009) Metaheuristics network website 2000. http://www.metaheuristics.net/. Visited in January
  11. Dorigo M, Di Caro G, Gambardella LM (1999) Ant algorithms for discrete optimization. Artif Life 5(2): 137–172. doi: 10.1162/106454699568728 CrossRefGoogle Scholar
  12. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micromachine and human science, Nagoya, Japan pp 39–43Google Scholar
  13. Farmer JD, Packard N, Perelson A (1986) The immune system, adaptation and machine learning. Phys D 22(1-3): 187–204. doi: 10.1016/0167-2789(81)90072-5 CrossRefGoogle Scholar
  14. Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedure. J Global Optim 6(2): 109–133. doi: 10.1007/BF01096763 CrossRefGoogle Scholar
  15. Fogel L, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New YorkGoogle Scholar
  16. Gambardella LM, Dorigo M (1996) Solving symmetric and asymmetric TSPs by ant colonies. In: Proceedings of IEEE international conference on evolutionary computation pp 622–627Google Scholar
  17. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2): 60–68. doi: 10.1177/003754970107600201 CrossRefGoogle Scholar
  18. Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320: 1210–1213CrossRefGoogle Scholar
  19. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5): 533–549. doi: 10.1016/0305-0548(86)90048-1 CrossRefGoogle Scholar
  20. Glover F (1989) Tabu search: part I. ORSA J Comput 1: 190–206CrossRefGoogle Scholar
  21. Glover F (1990) Tabu search: a tutorial. Interfaces 20(4): 74–94CrossRefGoogle Scholar
  22. Hansen P, Mladenovi N (2001) Variable neighborhood search: principles and applications. Euro J Oper Res 130(3): 449–467. doi: 10.1016/S0377-2217(00)00100-4 CrossRefGoogle Scholar
  23. Hastings WK (1970) Monte Carlo sampling methods using markov chains and their applications. Biometrika 57(1): 97–109CrossRefGoogle Scholar
  24. Helfman G, Collette B, Facey D (1997) The diversity of fishes. Blackwell Publishing, OxfordGoogle Scholar
  25. Hess WH (1920) Notes on the biology of some common Lampyridae. Biol Bull 38(2): 39–76CrossRefGoogle Scholar
  26. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann ArborGoogle Scholar
  27. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization, technical report-TR06, Erciyes University, Engineering Faculty, Computer Engineering DepartmentGoogle Scholar
  28. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Piscataway, NJ, pp 1942–1948. doi: 10.1109/ICNN.1995.488968
  29. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science, New Series 220(4598):671-680. Stable http://www.jstor.org/stable/1690046
  30. Koza JR (1990) Non-linear genetic algorithms for solving problems. United States Patent 4,935,877. Filed May 20, 1988. Issued June 19Google Scholar
  31. Lederberg J, Tatum EL (1946) Novel genotypes in mixed cultures of biochemical mutants of bacteria. Cold Spring Harbor Symp Quant Biol 11:113–114Google Scholar
  32. Lucic P (2002) Modelling transportation problems using concepts of swarm intelligence and soft computing, Ph.D. thesis, Faculty of the Virginia Polytechnic Institute and State University, VirginiaGoogle Scholar
  33. Margullis L (1967) On the origin of mitosing Cells. J Theor Bio 14(3): 255–274Google Scholar
  34. Margullis L (1970) Origin of eukaryotic cells. Yale University Press, USAGoogle Scholar
  35. Margulis L, Sagan D (1995) What is life? Simon & Schuster. New YorkGoogle Scholar
  36. Martello S, Toth P (1991) Knapsack problems: algorithms and computer implementations. Wiley, England, pp 221–239Google Scholar
  37. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21: 1087–1092. doi: 10.1063/1.1699114 CrossRefGoogle Scholar
  38. Mitchel M (1999) An introduction to genetic algorithms. MIT Press, CambridgeGoogle Scholar
  39. Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11): 1097–1100. doi: 10.1016/S0305-0548(97)00031-2 CrossRefGoogle Scholar
  40. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms, Caltech concurrent computation program, C3P Report 826Google Scholar
  41. Moyson F, Manderick B (1988) The collective behaviour of ants: an example of self-organization in massive parallelism. In: Actes de AAAI spring symposium on parallel models of intelligence, Stanford, CalifornieGoogle Scholar
  42. Nakrani S, Tovey S (2004) On honey bees and dynamic server allocation in internet hosting centers. Adapt Behav 12(1–3): 223–240. doi: 10.1177/105971230401200308 CrossRefGoogle Scholar
  43. Or I (1976) Traveling salesman type combinatorial problems y their relations to the logistics of blood banking. Ph.D. Thesis. Department of Industrial Engineering y Management Sciences, Northwestern UnivGoogle Scholar
  44. Park JM, Deem MW (2007) Phase diagrams of quasispecies theory with recombination and horizontal gene transfer. Phys Rev Lett 98(5): 1–4. doi: 10.1103/PhysRevLett.98.058101 Google Scholar
  45. Pavlov I (1972) Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Oxford University Press, OxfordGoogle Scholar
  46. Rechenberg I (1965) Cybernetic solution path of an experimental problem. Royal Aircraft Establishment Library Translation, FarnboroughGoogle Scholar
  47. Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. Comput Gr (ACM SIGGRAPH ‘87 Conf Proc) 21(4): 25–34. doi: 10.1145/37401.37406 CrossRefGoogle Scholar
  48. Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22: 400–407CrossRefGoogle Scholar
  49. Rubinstein RY (1997) Optimization of computer simulation models with rare events. Euro J Oper Res 99: 89–112. doi: 10.1016/S0377-2217(96)00385-2 CrossRefGoogle Scholar
  50. Ruiz-Vanoye JA (2010) REPOsitory of Combinatorial Optimization Problems & meta-heuristics (REPOCOP), http://repocop.ruizvanoye.com. Accessed 29 January 2010
  51. Ruiz-Vanoye JA, Díaz-Parra O (2010) Transgenic algorithm for the solution of the cargo management and scheduling of transport vehicles. Unpublished manuscriptGoogle Scholar
  52. Smith SF (1980) A learning system based on genetic adaptive algorithms, Ph.D. dissertation in University of PittsburghGoogle Scholar
  53. Srinivas M, Patnaik LM (1994) Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans Syst Man Cybern 24(4): 656–667CrossRefGoogle Scholar
  54. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4): 341–359. doi: 10.1023/A:1008202821328 CrossRefGoogle Scholar
  55. Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27: 279–306CrossRefGoogle Scholar
  56. Wen-liang Z, Jun Z, Wei-neng C (2007) A novel discrete particle swarm optimization to solve traveling salesman problem. In: IEEE congress on evolutionary computation, CEC, pp 3283–3287. doi: 10.1109/CEC.2007.4424894
  57. Wright S (1977) Evolution and genetics of populations, vol. 3. Experimental results and evolutionary deductions. University of Chicago Press, ChicagoGoogle Scholar
  58. Yang XS (2008) Firefly algorithm (chapter 8), Nature-inspired metaheuristic algorithms. Luniver Press, BeckingtonGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Centro Nacional de Investigación y Desarrollo TecnológicoCuernavacaMexico
  2. 2.Universidad Autónoma del Estado de Morelos. FCAeICuernavacaMexico

Personalised recommendations