An MOLP based procedure for finding efficient units in DEA models

  • F. Hosseinzadeh Lotfi
  • A. A. Noora
  • G. R. Jahanshahloo
  • J. Jablonsky
  • M. R. Mozaffari
  • J. Gerami
Original Paper

Abstract

In this paper a multiple objective linear programming (MOLP) problem whose feasible region is the production possibility set with variable returns to scale is proposed. By solving this MOLP problem by multicriterion simplex method, the extreme efficient Pareto points can be obtained. Then the extreme efficient units in data envelopment analysis (DEA) with variable returns to scale, considering the specified theorems and conditions, can be obtained. Therefore, by solving the proposed MOLP problem, the non-dominant units in DEA can be found. Finally, a numerical example is provided.

Keywords

Data envelopment analysis Multiple objective linear programming Linear programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen R, Athanassopoulos A, Dyson AG, Thanassoulis E (1997) Weights restrictions and value judgements in data envelopment analysis: evolution, development and future directions. Ann Oper Res 73: 13–34CrossRefGoogle Scholar
  2. Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag Sci 30(9): 1078–1092CrossRefGoogle Scholar
  3. Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2: 429–444CrossRefGoogle Scholar
  4. Charnes A, Cooper WW, Rhodes E (1979) Short communication: measuring efficiency of decision making units. Eur J Oper Res 3: 339CrossRefGoogle Scholar
  5. Hwang C.L, Masud A (1979) Multiple objective decision making-methods and applications. In: Lecture notes in economics and mathematical systems, vol 164. Springer, BerlinGoogle Scholar
  6. Joro T, Korhonen P, Wallenius J (1998) Structural comparison of data envelopment analysis and multiple objective linear programming. Manag Sci 44: 962–970CrossRefGoogle Scholar
  7. Pedraja-Chaparro F, Salinas-Jimenez J, Smith P (1997) On the Role of weight restrictions in data envelopment analysis. J Prod Anal 8: 215–230CrossRefGoogle Scholar
  8. Steuer RE (1986) Multiple criteria optimization: theory, computation, and application. Wiley, New YorkGoogle Scholar
  9. Thompson RG, Singleton F, Thrall R, Smith B (1986) Comparative site evaluations for locating a high-energy physics lab in Texas. Interfaces 16: 35–49CrossRefGoogle Scholar
  10. Zeleny M (1982) Multiple criteria decision making. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • F. Hosseinzadeh Lotfi
    • 1
  • A. A. Noora
    • 2
  • G. R. Jahanshahloo
    • 3
  • J. Jablonsky
    • 4
  • M. R. Mozaffari
    • 1
  • J. Gerami
    • 1
  1. 1.Department of Mathematics, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of MathematicsSistan and Baluchestan UniversityZahedanIran
  3. 3.Department of MathematicsTarbiat Moallem UniversityTehranIran
  4. 4.Department of EconometricsUniversity of Economics PraguePragueCzech Republic

Personalised recommendations