LaGO: a (heuristic) Branch and Cut algorithm for nonconvex MINLPs

Original Paper


We present a Branch and Cut algorithm of the software package LaGO to solve nonconvex mixed-integer nonlinear programs (MINLPs). A linear outer approximation is constructed from a convex relaxation of the problem. Since we do not require an algebraic representation of the problem, reformulation techniques for the construction of the convex relaxation cannot be applied, and we are restricted to sampling techniques in case of nonquadratic nonconvex functions. The linear relaxation is further improved by mixed-integer-rounding cuts. Also box reduction techniques are applied to improve efficiency. Numerical results on medium size test problems are presented to show the efficiency of the method.


Global optimization Branch and bound Branch and Cut Outer approximation Mixed-integer nonlinear programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adjiman CS and Floudas CA (1997). Rigorous convex underestimators for general twice-differentiable problems. J Global Optim 9: 23–40 CrossRefGoogle Scholar
  2. Adjiman CS, Dallwig S, Floudas CA and Neumaier A (1998). A global optimization method, αBB, for general twice-differentiable constrained NLPs—I. Theor Adv Comp Chem Eng 22: 1137–1158 Google Scholar
  3. Adjiman CS, Androulakis IP and Floudas CA (2000). Global optimization of mixed-integer nonlinear problems. AIChE J 46: 1769–1797 CrossRefGoogle Scholar
  4. Ahadi-Oskui T (2006) Optimierung des Entwurfs komplexer Energieumwandlungsanlagen. Fortschritts-Berichte VDI, Reihe 6, Nr. 543. VDI-VerlagGoogle Scholar
  5. Ahadi-Oskui T, Tsatsaronis G (2006) Optimization of the design of a complex energy conversion system using mathematical programming and genetic algorithms. In: Proceedings of IMECE2006Google Scholar
  6. Ahadi-Oskui T, Nowak I, Tsatsaronis G, Vigerske S (2007) Optimizing the design of complex energy conversion systems by Branch and Cut. Preprint 07-11. Department of Mathematics, Humboldt University Berlin, (submitted)
  7. Akrotirianakis IG and Floudas CA (2004). A new class of improved convex underestimators for twice differentiable constrained NLPs. J Global Optim 30(4): 367–390 CrossRefGoogle Scholar
  8. Bussieck MR, Drud AS and Meeraus A (2003). MINLPLib—a collection of test models for mixed-integer nonlinear programming. INFORMS J Comput 15(1): 114–119 CrossRefGoogle Scholar
  9. Duran MA and Grossmann IE (1986). An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Prog 36: 307–339 CrossRefGoogle Scholar
  10. Fletcher R and Leyffer S (1994). Solving mixed integer nonlinear programs by outer approximation. Math Program 66(3(A)): 327–349 CrossRefGoogle Scholar
  11. Floudas CA, Akrotirianakis IG, Caratzoulas C, Meyer CA and Kallrath J (2005). Global optimization in the 21st century: advances and challenges. Comput Chem Eng 29(6): 1185–1202 CrossRefGoogle Scholar
  12. GAMS Development Corp. (2003) GAMS—the solver manualsGoogle Scholar
  13. Gonçalves JPM, Ladanyi L (2005) An implementation of a separation procedure for mixed integer rounding inequalities. Research Report RC23686, IBM Research Division, AugustGoogle Scholar
  14. Lougee-Heimer R (2003) The common optimization interface for operations research. IBM J Res Dev 47(1):57–66. Google Scholar
  15. Marchand H and Wolsey LA (2001). Aggregation and mixed integer rounding to solve MIPs. Oper Res 49(3): 363–371 CrossRefGoogle Scholar
  16. Meyer CA and Floudas CA (2005). Convex underestimation of twice continuously differentiable functions by piecewise quadratic perturbation: Spline αBB. J Global Optim 29(6): 1185–1202 Google Scholar
  17. Nemhauser GL and Wolsey LA (1988). Integer and combinatorial optimization. Wiley-Interscience, New York Google Scholar
  18. Neumaier A (2004) Complete search in continuous global optimization and constraint satisfaction. In: Acta numerica, vol 13, chap 4. Cambridge University Press, Cambridge, pp 271–370Google Scholar
  19. Nowak I (1999). A new semidefinite programming bound for indefinite quadratic forms over a simplex. J Global Optim 14(4): 357–364 CrossRefGoogle Scholar
  20. Nowak I (2005a). Lagrangian decomposition of block-separable mixed-integer all-quadratic programs. Math Program 102(2): 295–312 CrossRefGoogle Scholar
  21. Nowak I (2005b). Relaxation and decomposition methods for mixed integer nonlinear programming. Birkhäuser, Basel Google Scholar
  22. Nowak I, Alperin H, Vigerske S (2003) LaGO—an object oriented library for solving MINLPs. In: Bliek Ch, Jermann Ch, Neumaier A (eds) Global optimization and constraint satisfaction, volume 2861 of Lecture Notes in Computer Science. Springer, Heidelberg, pp 31–43Google Scholar
  23. Nowak I, Vigerske S LaGO—Lagrangian Global Optimizer. Scholar
  24. Sahinidis N, Tawarmalani M (2002) BARON.
  25. Tawarmalani M and Sahinidis NV (2004). Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math Program 99: 563–591 CrossRefGoogle Scholar
  26. Tawarmalani M and Sahinidis NV (2002). Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software and applications. Kluwer, Dordrecht Google Scholar
  27. Viswanathan J and Grossmann IE (1990). A combined penalty function and outer-approximation method for MINLP optimization. Comput Chem Eng 14(7): 769–782 CrossRefGoogle Scholar
  28. Wächter A, Biegler LT (2006) On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math Prog 106(1):25–57. Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Lufthansa Systems BerlinBerlinGermany
  2. 2.Department of MathematicsHumboldt UniversityBerlinGermany

Personalised recommendations