Ultrasound-assisted fabrication of N-cyano-N-arylbenzenesulfonamides at ambient temperature: improvements with biosynthesized Ag/feldspar nanocomposite

  • Mahmoud NasrollahzadehEmail author
  • Fatemeh Ghorbannezhad
  • Rajender S. VarmaEmail author
Original Paper


A mild and effective method for ultrasound-assisted N-sulfonylation of arylcyanamides with aryl sulfonyl chloride is introduced at ambient temperature; synthesis of assorted derivatives of N-cyano-N-arylbenzenesulfonamide as electrophilic cyanation agent can be further improved using Ag/feldspar nanocomposite, accessible via an simple, eco-friendly and inexpensive method using Hedera helix leaf extract. The important advantages of this method include clean conditions, high purity and yield, and easy workup procedure with minimum generation of waste. The structure and morphology nanocatalyst were characterized by energy-dispersive X-ray spectroscopy, field emission scanning electron microscope, transmission electron microscopy, X-ray powder diffraction and elemental mapping.

Graphic abstract


N-Sulfonylation Sulfonyl chloride N-Cyano-N-arylbenzenesulfonamide Ultrasound irradiation Ag/feldspar nanocomposite 



This work was supported by the University of Qom. RSV was supported, in part, from ERDF project "Development of pre-applied research in nanotechnology and biotechnology" (No. CZ.02.1.01/0.0/0.0/17_048/0007323)

Compliance with ethical standards

Conflict of interest

The author declares that they have no conflict of interest.


  1. Anderson RS, Anderson SP (2010) Geomorphology: the mechanics and chemistry of landscapes. Cambridge University Press, Cambridge, p 187CrossRefGoogle Scholar
  2. Bankar A, Joshi B, Kumar AR, Zinjarde S (2010) Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf A 368:58–63CrossRefGoogle Scholar
  3. Bhat SV, Robinson D, Moses JE, Sharma P (2016) Synthesis of oxadiazol-5-imines via the cyclizative capture of in Situ generated cyanamide ions and nitrile oxides. Org Lett 18(5):1100–1103CrossRefGoogle Scholar
  4. Buono FG, Chidambaram R, Mueller RH, Waltermire RE (2008) Insights into palladium-catalyzed cyanation of bromobenzene: additive effects on the rate-limiting step. Org Lett 10:5325–5328CrossRefGoogle Scholar
  5. Chatel G (2017) Sonochemistry-new opportunities for green chemistry. World Scientific, London, p 170CrossRefGoogle Scholar
  6. Chen J, Sun Y, Liu B, Liu D, Cheng J (2012) The palladium-catalyzed desulfitative cyanation of arenesulfonyl chlorides and sodium sulfonates. Chem Commun 48:449–451CrossRefGoogle Scholar
  7. Cravotto G, Cintas P (2007) Forcing and controlling chemical reactions with ultrasound. Angew Chem Int Ed 46:5476–5478CrossRefGoogle Scholar
  8. Cristau HJ, Ouali A, Spindler JF, Taillefer M (2005) Mild and efficient copper-catalyzed cyanation of aryl iodides and bromides. Chem Eur J 11:2483–2492CrossRefGoogle Scholar
  9. Fleming F, Yao L, Ravikumar PC, Funk L, Shook BC (2010) Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem 53:7902–7917CrossRefGoogle Scholar
  10. Gomtsyan A (2012) Heterocycles in drugs and drug discovery. Chem Heterocycl Compd 48:7–10CrossRefGoogle Scholar
  11. Gong T-J, Xiao B, Cheng W-M, Su W, Xu J, Liu Z-J, Liu L, Fu Y (2013) Rhodium-catalyzed directed C–H cyanation of arenes with N-cyano-N-phenyl-p-toluenesulfonamide. J Am Chem Soc 135:10630–10633CrossRefGoogle Scholar
  12. Gu L-J, Jin C, Wang R, Ding H-Y (2014) Rhodium catalyzed ortho-cyanation of arylphosphates with N-cyano-N-phenyl-p-toluenesulfonamide. ChemCatChem 6:1225–1228CrossRefGoogle Scholar
  13. Habibi D, Nasrollahzadeh M, Bayat Y (2011) AlCl3 as an effective lewis acid for the synthesis of arylaminotetrazoles. Synth Commun 41:2135–2145CrossRefGoogle Scholar
  14. Heydari S, Habibi D (2018) The Bismarck Brown Y based functional polymer-bound palladium nanoparticles as a capable catalyst for the synthesis of N-arylsulfonyl cyanamides. Polyhedron 154:138–147CrossRefGoogle Scholar
  15. Jordan AM, Roughley SD (2009) Drug discovery chemistry: a primer for the non-specialist. Drug Discov Today 14:731–744CrossRefGoogle Scholar
  16. Khodadadi B, Bordbar M, Nasrollahzadeh M (2017) Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: catalytic activity for reduction of organic dyes. J Colloid Interface Sci 490:1–10CrossRefGoogle Scholar
  17. Kiyokawa K, Nagata T, Minakata S (2016) Electrophilic cyanation of boron enolates: efficient access to various β-ketonitrile derivatives. Angew Chem Int Ed 55:10458–10462CrossRefGoogle Scholar
  18. Kleemann A, Engel J, Kutscher B, Reichert D (2002) Pharmaceutical substances: syntheses, patents applications. Org Proc Res Dev 6(5):739–740Google Scholar
  19. Kumar KM, Mandal BK, Tammina SK (2013) Green synthesis of nano platinum using naturally occurring polyphenols. RSC Adv 3:4033–4039CrossRefGoogle Scholar
  20. Kuna E, Behling R, Valange S, Chatel G, Colmenares JC (2017) Sonocatalysis: a potential sustainable pathway for the valorization of lignocellulosic biomass and derivatives. Top Curr Chem 375:41–61CrossRefGoogle Scholar
  21. Kurzer F (1949a) Cyanamides. Part I. The synthesis of substituted arylsulphonylcyanamides. J Chem Soc 1034–1038Google Scholar
  22. Kurzer F (1949b) Cyanamides. Part III. The formation of substituted triazines from o-halogenophenylureas and arylsulphonyl chlorides. J Chem Soc 3029–3033Google Scholar
  23. Larock RC (1989) Comprehensive organic transformations, a guide to functional group preparations, In comprehensive organic transformations. VCH, New York, p 819Google Scholar
  24. Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225CrossRefGoogle Scholar
  25. Li JJ (2013) Heterocyclic chemistry in drug discovery. Wiley, Hoboken, pp 1–647Google Scholar
  26. Lin C-C, Hsieh T-H, Liao P-Y, Liao Z-Y, Chang C-W, Shih Y-C, Yeh W-H, Chien T-C (2014) Practical synthesis of N-substituted cyanamides via Tiemann rearrangement of amidoximes. Org Lett 16:892–895CrossRefGoogle Scholar
  27. Metcalfe DJ (2005) Hedera helix L. J Ecol 93:632–648CrossRefGoogle Scholar
  28. Mishra A, Vats TK, Deb I (2016) Ruthenium-catalyzed direct and selective C-H cyanation of N-(hetero)aryl-7-azaindoles. J Org Chem 81:6525–6534CrossRefGoogle Scholar
  29. Momeni S, Nasrollahzadeh M, Rustaiyan A (2016) Green synthesis of the Cu/ZnO nanoparticles mediated by Euphorbia prolifera leaf extract and investigation of their catalytic activity. J Colloid Interface Sci 472:173–179CrossRefGoogle Scholar
  30. Nair LS, Laurencin CT (2007) Silver nanoparticles: synthesis and therapeutic applications. J Biomed Nanotechnol 3:301–316CrossRefGoogle Scholar
  31. Nasrollahzadeh M, Mahmoudi-Gom-Yek S, Motahharifar N, Ghafori Gorab M (2019) Recent developments in the plant-mediated green synthesis of Ag-based nanoparticles for environmental and catalytic applications. Chem Rec. CrossRefGoogle Scholar
  32. Nekrasov DD (2004) Synthesis and chemical transformations of mono- and disubstituted cyanamides. Russ J Org Chem 40:1387–1402CrossRefGoogle Scholar
  33. Rappoport Z (1970) In chemistry of the cyano group. Wiley, London, p 121Google Scholar
  34. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Treatise on geochemistry, vol 3. Elsevier Science, New York, pp 1–64Google Scholar
  35. Sajjadi M, Nasrollahzadeh M, Sajadi SM (2017) Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity. J Colloid Interface Sci 497:1–13CrossRefGoogle Scholar
  36. Schareina T, Zapf A, Cotte A, Gotta M, Beller M (2011) A versatile protocol for copper-atalyzed cyanation of aryl and heteroaryl bromides with acetone cyanohydrin. Adv Synth Catal 353:777–780CrossRefGoogle Scholar
  37. Su W, Gong TJ, Xiao B, Fu Y (2015) Rhodium(III)-catalyzed cyanation of vinylic C-H bonds: N-cyano-N-phenyl-p-toluenesulfonamide as a cyanation reagent. Chem Commun 51:11848–11851CrossRefGoogle Scholar
  38. Sundermeier M, Mutyala S, Zapf A, Spannenberg A, Beller M (2003) A convenient and efficient procedure for the palladium-catalyzed cyanation of aryl halides using trimethylsilylcyanide. J Organomet Chem 684:50–55CrossRefGoogle Scholar
  39. Ushkov AV, Grushin VV (2011) Rational catalysis design on the basis of mechanistic understanding: highly efficient Pd-catalyzed cyanation of aryl bromides with NaCN in recyclable solvents. J Am Chem Soc 133:10999–11005CrossRefGoogle Scholar
  40. Varma RS, Naicker KP (1998) Ultrasound accelerated permanganate oxidation: an improved procedure for the synthesis of 1,2-cis diols from olefins. Tetrahedron Lett 39:7463–7466CrossRefGoogle Scholar
  41. Walsh CT (2015) Nature loves nitrogen heterocycles. Tetrahedron Lett 56:3075–3081CrossRefGoogle Scholar
  42. Wang R, Falck JR (2013) Rhodium(I)-catalyzed N-CN bond cleavage: intramolecular β-cyanation of styrenes. Chem Commun 49:6516–6518CrossRefGoogle Scholar
  43. Xu H, Zeiger BW, Suslick K (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42:2555–2567CrossRefGoogle Scholar
  44. Yeung PY, So CM, Lau CP, Kwong FY (2011) A mild and efficient palladium-catalyzed cyanation of aryl chlorides with K4[Fe(CN)6]. Org Lett 13:648–651CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of QomQomIran
  2. 2.Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations