Effect of the climatic conditions in energy efficiency of Spanish existing dwellings

  • Juan Carlos Ríos FernándezEmail author
  • Juan M. González-Caballín
  • Antonio José Gutiérrez-Trashorras
Original Paper


The member states of the European Union must increase the energy efficiency in residential buildings within the plan to reduce the external energy dependence and energy shortage. In the present work, a standard building representative of the existing buildings in Spain built before 1980 was used. An evaluation of the energy rating of that building in each climatic zone of Spain was carried out to assess the influence of these climatic conditions on energy consumption and greenhouse gas emissions. This analysis was carried out with Cerma software according to the calculation procedure demanded by the Spanish Building Technical Code. Results show that E or F energy score was obtained for the different climatic zones and with significant differences in CO2 emissions, even for climatic zones with the same energy rating. A sensitivity study of the necessary enhancements in each climatic zone was carried out to analyze the influence of most common energy demand and thermal system improvements, and combinations of them. Also, the minimum requirements to obtain D qualification in each Spanish climatic zone were obtained. As a result, it is possible to reduce emissions in Spain by over 3.5 Mt CO2 per year. In climatic zones with initial qualification E, it is possible to reach a D label, avoiding 40% of the initial CO2 emissions and reducing primary energy consumption to about 50 kWh/m2 year (over 60% reduction). For the climatic zones with initial qualification F, over 53% of the initial CO2 emissions are avoided by reaching D label. Zones with the highest heating demand (over 230 kWh/m2 year) and very low cooling demand need to improve thermal systems by means of a heat pump. Finally, some policy measures to create lines of financial aids or subsidies for the implementation of actions to reduce energy demand in Spanish homes are proposed.

Graphic abstract


Spanish climatic zones Residential building Existing dwellings Energy efficiency Energy performance certificate Greenhouse gas emission reduction 

List of symbols


CO2 emissions generated by the building (kg CO2/m2 year)


Average CO2 emissions from residential buildings strictly meeting CTE requirements (kg CO2/m2 year)


Average CO2 emissions from existing residential buildings in 2006 (kg CO2/m2 year)


Air renewals


Ratio between CO2 emissions of 50th and 10th percentiles in residential buildings strictly meeting BTC requirements


Ratio between CO2 emissions of 50th and 10th percentiles in existing residential building stock


Thermal transmittance (W/m2 K)


Thermal conductivity (W/m2 K)


First energy efficiency rating index


Second energy efficiency rating index





Building Research Establishment Environmental Assessment Method


Building Technical Code


Coefficient of performance


Domestic hot water


Energy efficiency ontology


Energy efficiency ratio


Energy efficiency services


European Union


Greenhouse gases


Heat pump


Institute for Energy Diversification and Saving


International Energy Agency


National Statistics Institute


Leadership in Energy and Environmental Design


Liquefied petroleum gas


Ministry of Industry, Energy and Tourism


Modified solar factor


National Building Code


National Energy Efficiency Action Plan


Natural gas


Regulations on Building Heating Installations


Royal decree


Standard building


Solar factor


Thermal insulation

Chemical symbol


Carbon dioxide



  1. Andaloro AP, Salomone R, Ioppolo G, Andaloro L (2010) Energy certification of buildings: a comparative analysis of progress towards implementation in European countries. Energy Policy 38:5840–5866CrossRefGoogle Scholar
  2. Bagheri F, Mokarizadeh V, Jabbar M (2013) Developing energy performance label for office buildings in Iran. Energy Build 61:116–124CrossRefGoogle Scholar
  3. Borgstein EH, Lamberts R, Hensen JLM (2016) Evaluating energy performance in non-domestic buildings: a review. Energy Build 128:734–755CrossRefGoogle Scholar
  4. Carpio M, Martín-Morales M, Zamorano M (2015) Comparative study by an expert panel of documents recognized for energy efficiency certification of buildings in Spain. Energy Build 99:98–103CrossRefGoogle Scholar
  5. Cerma (2017) Certificación de Eficiencia Energética de Edificios de viviendas nuevos y existentes. Cerma software v.4.2.5Google Scholar
  6. Chandel SS, Sharma A, Marwaha BM (2016) Review of energy efficiency initiatives and regulations for residential buildings in India. Renew Sustain Energy Rev 54:1443–1458CrossRefGoogle Scholar
  7. Cuchí A (2016) Diagnóstico de la rehabilitación en Comunidades Autónomas. Fundación CONAMA, Madrid. ISBN: 978-84-617-4203-5Google Scholar
  8. De Boeck L, Verbeke S, Audenaert A, De Mesmaeker L (2015) Improving the energy performance of residential buildings: a literature review. Renew Sustain Energy Rev 52:960–975CrossRefGoogle Scholar
  9. Directive 2012/27/EU of the European Parliament and Council on Energy Efficiency, amending Directives 2009/125/EC and 2010/30/EU and Repealing Directive 2004/8/EC and 2006/32/EC. Official J Eur Union Brussels, Belgium, October 2012Google Scholar
  10. European Commission (2011) Energy efficiency plan 2011. COM109. BrusselsGoogle Scholar
  11. European Commission (2019) Energy topics. Accessed 20 August 2019
  12. European Directive 2010/31/EU of the European Parliament and of the Council, on the Energy Performance of buildings. Accessed 20 August 2019
  13. Eurostat (2019) Energy balances: final energy consumption by sector. Accessed 20 August 2019
  14. Gaglia AG, Dialynas EN, Argiriou AA, Kostopoulou E, Tsiamitros D, Stimoniaris D, Laskos KM (2019) Energy performance of European residential buildings: energy use, technical and environmental characteristics of the Greek residential sector-energy conservation and CO2 reduction. Energy Build 183:86–104CrossRefGoogle Scholar
  15. Gamalath I, Hewage K, Ruparathna R, Karunathilake H, Prabatha T, Sadiq R (2018) Energy rating system for climate conscious operation of multi-unit residential buildings. Clean Technol Environ Policy 20(4):785–802CrossRefGoogle Scholar
  16. Gangolells M, Casals M, Forcada N, Macarulla M, Cuerva E (2016) Energy mapping of existing building stock in Spain. J Clean Prod 112:3895–3904CrossRefGoogle Scholar
  17. Harris DJ (1999) A quantitative approach to the assessment of the environmental impact of building materials. Build Environ 34(6):751–758CrossRefGoogle Scholar
  18. Heidarinejad M, Dahlhausen M, McMahon S, Pyke C, Srebric J (2014) Cluster analysis of simulated energy use for LEED certified US office buildings. Energy Build 85:86–97CrossRefGoogle Scholar
  19. Hossaini N, Hewage K, Sadiq R (2015) Spatial life cycle sustainability assessment: a conceptual framework for net-zero buildings. Clean Technol Environ Policy 17(8):2243–2253CrossRefGoogle Scholar
  20. Hu M, Qiu Y (2019) A comparison of building energy codes and policies in the USA, Germany, and China: progress toward the net-zero building goal in three countries. Clean Technol Environ Policy 21(2):291–305CrossRefGoogle Scholar
  21. Instituto para la Diversificación y Ahorro de la Energía (IDAE) (2011) Proyecto SECH-SPAHOUSEC Análisis del consumo energético del sector residencial en España. Accessed 20 August 2019
  22. Instituto para la Diversificación y Ahorro de la Energía (IDAE) (2016) PROGRAMA PAREER-CRECE. Accessed 20 August 2019
  23. International Energy Agency (IEA) (2010) Energy Performance Certification of Buildings. A policy tool to improve energy Efficiency. OECD/IEA, ParisGoogle Scholar
  24. Labanca N, Suerkemper F, Bertoldi P, Irrek W, Duplessis B (2015) Energy efficiency services for residential buildings: market situation and existing potentials in the European Union. J Clean Prod 109:284–295CrossRefGoogle Scholar
  25. Martínez-Molina A, Tort-Ausina I, Cho S, Vivancos JL (2016) Energy efficiency and thermal comfort in historic buildings: a review. Renew Sustain Energy Rev 61:70–85CrossRefGoogle Scholar
  26. Milutienė E, Staniškis JK, Kručius A, Augulienė V, Ardickas D (2012) Increase in buildings sustainability by using renewable materials and energy. Clean Technol Environ Policy 14(6):1075–1084CrossRefGoogle Scholar
  27. Ministerio de Fomento (Gobierno de España) (2014) Estrategia a largo plazo para la rehabilitación energética en el sector de la Edificación en España. Accessed 20 August 2019
  28. Ministerio de Fomento (Gobierno de España) (2019) Código Técnico de la Edificación (CTE, in English BTC). Accessed 20 August 2019
  29. Ministerio de Industria, Energía y Turismo (Gobierno de España) (2011) Instituto para la Diversificación y Ahorro de Energía (IDAE). Escala de Calificación energética de edificios existentes y Edificios de nueva construcción. IDAE, MadridGoogle Scholar
  30. Ministerio de Industria, Energía y Turismo (Gobierno de España) (2014) Plan Nacional de Acción y Eficiencia Energética 2014–2020 (NEEAP 2014–2020). Madrid. Spain. Accessed 20 August 2019
  31. Pérez-Lombard L, Ortiz J, González R, Maestre IR (2009) A review of benchmarking, rating and labelling concepts within the framework of building energy certification schemes. Energy Build 41(3):272–278CrossRefGoogle Scholar
  32. Poel B, Van Cruchten G, Balaras CA (2007) Energy performance assessment of existing dwellings. Energy Build 39:393–403CrossRefGoogle Scholar
  33. Real Decreto 1027/2007, de 20 de julio, por el que se aprueba el Reglamento de Instalaciones Térmicas en los Edificios, (RITE). Accessed 20 August 2019
  34. Real Decreto 235/2013, de 5 de abril, por el que se aprueba el procedimiento básico para la certificación de la eficiencia energética de los edificios. Accessed 20 August 2019
  35. Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación (BTE, in Spanish CTE). Accessed 20 August 2019
  36. Ríos JC (2019) A novel integrated waste energy reroofy system (IWERS) by thermal flows: a supermarket sector case. Sustain Prod Consum 19:97–104CrossRefGoogle Scholar
  37. Salleh MNM, Kandar MZ, Sakip SRM (2016) Benchmarking for energy efficiency on school buildings design: a review. Proc Soc Behav Sci 222:211–218CrossRefGoogle Scholar
  38. Scofield JH (2013) Efficacy of LEED-certification in reducing energy consumption and greenhouse gas emission for large New York City office buildings. Energy Build 67:517–524CrossRefGoogle Scholar
  39. Silvero F, Rodrigues F, Montelpare S, Spacone E, Varum H (2019) The path towards buildings energy efficiency in South American countries. Sustain Cities Soc 44:646–665CrossRefGoogle Scholar
  40. Terés-Zubiaga J, Campos-Celador A, González-Pinoa I, Escudero-Revilla C (2015) Energy and economic assessment of the envelope retrofitting in residential buildings in Northern Spain. Energy Build 86:194–202CrossRefGoogle Scholar
  41. Trashorras AJ, González JM, Álvarez E, Sánchez JP (2015) Certification of energy efficiency in new buildings: a comparison among the different climatic zones of Spain. IEEE Trans Ind Appl 51(4):2726–2731CrossRefGoogle Scholar
  42. US Green Building Council (2013) LEED 2009 for schools new construction and major renovations rating system. Green Building Council, WashingtonGoogle Scholar
  43. Vinagre JJ, González JM, Wilby MR, Rodríguez AB, García J (2013) EEOnt: an ontological model for a unified representation of energy efficiency in buildings. Energy Build 60:20–27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of EnergyUniversity of OviedoOviedoSpain

Personalised recommendations