Clean Technologies and Environmental Policy

, Volume 21, Issue 10, pp 2061–2071 | Cite as

Economic and environmental comparison of bioethanol dehydration processes via simulation: reactive distillation, reactor–separator process and azeotropic distillation

  • Carlos Eduardo Guzmán-Martínez
  • Agustín Jaime Castro-Montoya
  • Fabricio Nápoles-RiveraEmail author
Original Paper


The bioethanol produced using fermentation is obtained at a very low concentration. To be used as fuel in gasoline blends, a higher than 99% weight purity is required. Therefore, highly demanding energy separation and purification processes are used. Given this fact, this work presents, via simulation, an economic and environmental comparison of alternative methods for ethanol dehydration based on ethylene oxide/propylene oxide hydration and azeotropic distillation with benzene and cyclohexane. These reactive methods consist of conventional reaction separation processes and intensified processes such as reactive distillation (RD), both coupled with organic Rankine cycles, offering an additional value-added product (ethylene glycol or propylene glycol), electric power generation and the capacity to reduce the global process steps in anhydrous ethanol production. The results indicate that reactive dehydration, specifically the reactor–separator process using propylene oxide at a low ethanol concentration (dilution effect of the fermenter output), is the best economic and environmental option among all the processes studied for anhydrous ethanol production. Likewise, reactive dehydration yields a higher net profit, ethanol yield and ethanol purity and lower CO2 emissions than azeotropic distillation.

Graphic abstract


Ethanol dehydration Reactive distillation Organic Rankine cycle Propylene oxide Biofuel 



Net profit


Annual sales


Raw material


Technology cost


Mass flow output


Sales price


Mass flow input


Raw material price


Utility cost


Equipment cost


Azeotropic mixture price


Ethanol mass fraction equivalent


Anhydrous ethanol price


Total CO2 emissions


CO2 emissions


Reactive distillation using ethylene oxide at 20% mol water and 80% mol ethanol


Reactive distillation using ethylene oxide at 96% mol water and 4% mol ethanol


Reactive distillation using propylene oxide at 20% mol water and 80% mol ethanol


Reactive distillation using propylene oxide at 96% mol water and 4% mol ethanol


Reactor–separator process using ethylene oxide at 20% mol water and 80% mol ethanol


Reactor–separator process using ethylene oxide at 96% mol water and 4% mol ethanol


Reactor–separator process using propylene oxide at 20% mol water and 80% mol ethanol


Reactor–separator process using propylene oxide at 96% mol water and 4% mol ethanol


Azeotropic distillation using benzene at 20% mol water and 80% mol ethanol


Azeotropic distillation using benzene at 96% mol water and 4% mol ethanol


Azeotropic distillation using cyclohexane at 20% mol water and 80% mol ethanol


Azeotropic distillation using cyclohexane at 96% mol water and 4% mol ethanol




Organic Rankine cycle

List of symbols


Working hours (8000 h/year)


Interest rate (0.1%)


Factor to annualize the investment



Subscripts and superscripts






Raw material stream


Product stream


Life period of each technology (20 years)



The authors acknowledge the financial support from the Mexican Council for Science and Technology (CONACyT) and the Scientific Research Council of the Universidad Michoacana de San Nicolás de Hidalgo.

Supplementary material

10098_2019_1762_MOESM1_ESM.docx (612 kb)
Supplementary material 1 (DOCX 611 kb)


  1. AFDC (2018) Gobal ethanol production. Retrieved from Accessed 15 Dec 2018
  2. Aguilar-Sánchez P, Navarro-Pineda FS, Sacramento-Rivero JC, Barahona-Pérez LF (2018) Life-cycle assessment of bioethanol production from sweet sorghum stalks cultivated in the state of Yucatan, Mexico. Clean Technol Environ Policy 20(7):1685–1696. CrossRefGoogle Scholar
  3. Álvarez del Castillo-Romo A, Morales-Rodriguez R, Román-Martínez A (2018) Multiobjective optimization for the socio-eco-efficient conversion of lignocellulosic biomass to biofuels and bioproducts. Clean Technol Environ Policy 20(3):603–620. CrossRefGoogle Scholar
  4. An W, Lin Z, Chen J, Zhu J (2014) Simulation and analysis of a reactive distillation column for removal of water from ethanol–water mixtures. Ind Eng Chem Res 53:6056–6064. CrossRefGoogle Scholar
  5. Avilés-Martínez A, Medina-Herrera N, Jiménez-Gutiérrez A, Serna-González M, Castro-Montoya AJ (2015) Risk analysis applied to bioethanol dehydration processes: azeotropic distillation versus extractive distillation. Comput Aided Chem Eng. CrossRefGoogle Scholar
  6. Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust Sci 47:60–88. CrossRefGoogle Scholar
  7. Cardona CA, Sánches OJ, Gutiérrez LF (2010) Process synthesis for fuel ethanol production. Focus Catal. CrossRefGoogle Scholar
  8. Delgado JA, Águeda VI, Uguina MA, Sotelo JL, García A, Brea P, García-Sanz A (2013) Separation of ethanol–water liquid mixtures by adsorption on a polymeric resin Sepabeads 207®. Chem Eng J 220:89–97. CrossRefGoogle Scholar
  9. Dias MOS, Junqueira TL, Rossell CEV, MacIel Filho R, Bonomi A (2013) Evaluation of process configurations for second generation integrated with first generation bioethanol production from sugarcane. Fuel Process Technol 109:84–89. CrossRefGoogle Scholar
  10. Esquivel-Patiño GG, Serna-González M, Nápoles-Rivera F (2017) Thermal integration of natural gas combined cycle power plants with CO2 capture systems and organic Rankine cycles. Energy Convers Manag 151(August):334–342. CrossRefGoogle Scholar
  11. Gangadwala J, Radulescu G, Kienle A, Steyer F, Sundmacher K (2008) New processes for recovery of acetic acid from waste water. Clean Technol Environ Policy 10(3):245–254. CrossRefGoogle Scholar
  12. Huang K, Nakaiwa M (2006) Reactive distillation design with considerations of heats of reaction. AIChE J 52:2518–2534. CrossRefGoogle Scholar
  13. Kiss AA, Suszwalak DJPC (2012) Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Sep Purif Technol 86:70–78. CrossRefGoogle Scholar
  14. Kozlovsky IA, Kozlovsky RA, Koustov AV, Makarov MG, Suchkov JP, Shvets VF (2002) Kinetics and products distribution of selective catalytic hydration of ethylene- and propylene oxides in concentrated aqueous solutions. Org Process Res Dev 6(5):660–664. CrossRefGoogle Scholar
  15. Lai H, Lin Y, Tu C (2013) Isobaric vapour-liquid equilibria for the ternary system of (ethanol + water + 1,3-propanediol) and three constituent binary systems at P = 101.3 kPa. J Chem Thermodyn. CrossRefGoogle Scholar
  16. Martinez-Gomez J, Nápoles-Rivera F, Ponce-Ortega JM, El-Halwagi MM (2017) Optimization of the production of syngas from shale gas with economic and safety considerations. Appl Therm Eng 110:678–685. CrossRefGoogle Scholar
  17. Orosz MS, Mueller A, Quolin S, Hemond H (2010) Small scale solar orc system for distributed power. In: Conference SolarPaces 2009, Berlin, Germany, vol 1, no 3Google Scholar
  18. Oseguera-Villaseñor I, Martínez-Rodríguez G, Barroso-Muñoz FO, Segovia-Hernández JG, Hernández S (2018) Multiplicities in dividing wall distillation columns in the purification of bioethanol: energy considerations. Clean Technol Environ Policy 20(7):1631–1637. CrossRefGoogle Scholar
  19. Palomino A, Parientes DA, Gomez H, Paucar P (2013) Modelling ethanol-water pressure swing distillation in an structured packed bed column, Peruvian J Chem Eng 16(1):75–84Google Scholar
  20. Press AIN, Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573. CrossRefGoogle Scholar
  21. Santarelli L, Saxe M, Gross C, Surget A, Dulawa S, Weisstaub N, Hen R (2014) The path forward for biofuels. Science 301(5634):805–809. CrossRefGoogle Scholar
  22. Schefflan R (2011) Teach yourself the basics of Aspen Plus. Wiley, New York. CrossRefGoogle Scholar
  23. Singh N, Prasad R (2011) Fuel grade ethanol by diffusion distillation: an experimental study. J Chem Technol Biotechnol 86(5):724–730. CrossRefGoogle Scholar
  24. Singh A, Rangaiah GP (2017) Review of technological advances in bioethanol recovery and dehydration. Ind Eng Chem Res 56(18):5147–5163. CrossRefGoogle Scholar
  25. Tavan Y, Hosseini SH (2013) A novel integrated process to break the ethanol/water azeotrope using reactive distillation—part I: parametric study. Sep Purif Technol 118:455–462. CrossRefGoogle Scholar
  26. Tchanche BF, Lambrinos G, Frangoudakis A, Papadakis G (2011) Low-grade heat conversion into power using organic Rankine cycles—a review of various applications. Renew Sustain Energy Rev 15(8):3963–3979. CrossRefGoogle Scholar
  27. Wang XD, Zhao L, Wang JL, Zhang WZ, Zhao XZ, Wu W (2010) Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa. Sol Energy 84(3):353–364. CrossRefGoogle Scholar
  28. Wang X, Levy EK, Pan C, Romero CE, Banerjee A, Rubio-Maya C, Pan L (2019) Working fluid selection for organic Rankine cycle power generation using hot produced supercritical CO2 from a geothermal reservoir. Appl Therm Eng 149(December 2018):1287–1304. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de Ingeniería QuímicaUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico

Personalised recommendations