Advertisement

Clean Technologies and Environmental Policy

, Volume 21, Issue 8, pp 1587–1601 | Cite as

Greenhouse gas mitigation potential under different rice-crop rotation systems: from site experiment to model evaluation

  • Xianxian Zhang
  • Junguo Bi
  • Huifeng Sun
  • Jining Zhang
  • Sheng ZhouEmail author
Original Paper
  • 112 Downloads

Abstract

Crop rotation systems in fields could improve crop production and indirectly affect carbon and nitrogen dynamics due to multiple fertilizer applications. Therefore, it is important to evaluate the impact of these crop rotation systems on greenhouse gas (GHG) emissions. Field experiments were conducted with three different rotation systems, and the DeNitrification–DeComposition (DNDC) model was applied to monitor and estimate crop yields and GHG emissions during three rice-upland crop rotational periods (from June 2013 to May 2016). Low methane (CH4) and nitrous oxide (N2O) emissions were observed in rice-Chinese milk vetch and single rice rotation systems. The simulated crop yields fit the observed data very well (d > 0.80, EF > 0.70) after the model was calibrated by adjusting the crop parameters. The model-simulated daily and annual CH4 emissions agreed well with the field measurements (d > 0.7, EF = 0.41–0.98). The simulated N2O (d = 0.01–0.70, EF < 0 or close to 0) of accumulated emissions and daily fluxes (d = 0.07–0.14, EF < 0) showed low levels of accuracy with field observations. The GHG emissions in Shanghai rice paddy were different under various rotation systems, with the following order: single rice rotation system < rice-Chinese milk vetch rotation system < baseline rotation system of Shanghai paddy < 1/3 (rice-Chinese milk vetch + single rice + rice-winter wheat rice-winter) rotation system < rice-winter wheat rotation system under the same nitrogen loading. The DNDC was able to predict rice yields and GHG emissions under different crop rotation systems. The results provide positive reliable indications that crop rotation systems have the potential to reduce GHG emissions; e.g., the rice-Chinese milk vetch rotation system could mitigate the CH4 and N2O emissions.

Graphic abstract

Keywords

Crop rotation system Paddy rice Process model CH4 and N2Shanghai regional scale 

Notes

Acknowledgements

This study was financed by the Shanghai Agriculture Applied Technology Development Program, China (Nos. G2016060301), the Youth Talent Development Plan of Shanghai Municipal Agricultural System, China (No. 20170122), the National Natural Science Foundation of China (No. 41375157), and the National Key Technology Support Program of China (No. 2013BAD11B02).

References

  1. Ball B, Bingham I, Rees RM, Watson C, Litterick A (2005) The role of crop rotations in determining soil structure and crop growth conditions Canadian. J Soil Sci 85:557–577.  https://doi.org/10.4141/s04-078 CrossRefGoogle Scholar
  2. Burger M, Haden V, Chen H, Six J, Horwath W (2016) Stand age affects emissions of N2O in flood-irrigated alfalfa: a comparison of field measurements, DNDC model simulations and IPCC Tier 1 estimates. Nutr Cycl Agroecosyst 106:335–345.  https://doi.org/10.1007/s10705-016-9808-8 CrossRefGoogle Scholar
  3. Chadwick D, Sommer S, Thorman R, Fangueiro D, Cardenas L, Amon B, Misselbrook T (2011) Manure management: implications for greenhouse gas emissions. Anim Feed Sci Technol 166–167:514–531.  https://doi.org/10.1016/j.anifeedsci.2011.04.036 CrossRefGoogle Scholar
  4. Cha-un N, Chidthaisong A, Towprayoon S (2017a) Using the DNDC model to predict methane emissions from crop-rice rotation systems. Res J Chem Environ 21:36–46Google Scholar
  5. Cha-un N, Chidthaisong A, Yagi K, Sudo S, Towprayoon S (2017b) Greenhouse gas emissions, soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management. Agric Ecosyst Environ 237:109–120.  https://doi.org/10.1016/j.agee.2016.12.025 CrossRefGoogle Scholar
  6. Chen H, Yu C, Li C, Xin Q, Huang X, Zhang J, Yue Y, Huang G, Li X, Wang W (2016) Modeling the impacts of water and fertilizer management on the ecosystem service of rice rotated cropping systems in China Agriculture. Ecosyst Environ 219:49–57.  https://doi.org/10.1016/j.agee.2015.11.023 CrossRefGoogle Scholar
  7. Cong W, Hoffland E, Li L, Janssen B, van der Werf W (2015) Intercropping affects the rate of decomposition of soil organic matter and root litter. Plant Soil 391:399–411.  https://doi.org/10.1007/s11104-015-2433-5 CrossRefGoogle Scholar
  8. De Gryze S, Lee J, Ogle S, Paustian K, Six J (2011) Assessing the potential for greenhouse gas mitigation in intensively managed annual cropping systems at the regional scale. Agr Ecosyst Environ 144:150–158.  https://doi.org/10.1016/j.agee.2011.05.023 CrossRefGoogle Scholar
  9. Deng J, Li C, Frolking S (2015) Modeling impacts of changes in temperature and water table on C gas fluxes in an Alaskan peatland. J Geophys Res Biogeosci 120:1279–1295.  https://doi.org/10.1002/2014JG002880 CrossRefGoogle Scholar
  10. Dong W, Guo J, Xu L, Song Z, Zhang J, Tang A, Zhang Z, Leng C, Liu Y, Wang L (2018) Water regime-nitrogen fertilizer incorporation interaction: field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin China. J Environ Sci 64:289–297.  https://doi.org/10.1016/j.jes.2017.06.007 CrossRefGoogle Scholar
  11. Dutta B, Congreves K, Smith W, Grant B, Rochette P, Chantigny M, Desjardins R (2016) Improving DNDC model to estimate ammonia loss from urea fertilizer application in temperate agroecosystems. Nutr Cycl Agroecosyst 106:275–292.  https://doi.org/10.1007/s10705-016-9804-z CrossRefGoogle Scholar
  12. Gao S, Zhang R, Cao W, Fan Y, Gao J, Huang J, Bai J, Zeng N, Chang D, Katsu-Yoshi S, Thorup-Kristensen K (2015) Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in South China. J Integr Agric 14:2512–2520.  https://doi.org/10.1016/S2095-3119(15)61230-8 CrossRefGoogle Scholar
  13. Gao X, Yuan S, Lv A, Zhou P, An Y (2016) Effects of alfalfa green manure on rice production and greenhouse gas emissions based on a DNDC model simulation. Acta Prataculturae Sin 25:14–26.  https://doi.org/10.11686/cyxb2016038 CrossRefGoogle Scholar
  14. Gilhespy S, Anthony S, Cardenas L, Chadwick D, del Prado A, Li C, Misselbrook T, Rees R, Salas W, Sanz-Cobena A, Smith P, Tilston E, Topp C, Vetter S, Yeluripati J (2014) First 20 years of DNDC (DeNitrification DeComposition): model evolution. Ecol Model 292:51–62.  https://doi.org/10.1016/j.ecolmodel.2014.09.004 CrossRefGoogle Scholar
  15. Giltrap D, Li C, Saggar S (2010) DNDC: a process-based model of greenhouse gas fluxes from agricultural soils. Agric Ecosyst Environ 136:292–300.  https://doi.org/10.1016/j.agee.2009.06.014 CrossRefGoogle Scholar
  16. Grant B, Smith W, Desjardins R, Lemke R, Li C (2004) Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada. Clim Change 65:315–332.  https://doi.org/10.1023/b:clim.0000038226.60317.35 CrossRefGoogle Scholar
  17. Han J, Jia Z, Wu W, Li C, Han Q, Zhang J (2014) Modeling impacts of film mulching on rainfed crop yield in Northern China with DNDC. Field Crops Research 155:202–212.  https://doi.org/10.1016/j.fcr.2013.09.004 CrossRefGoogle Scholar
  18. Hao Q, Jiang C, Chai X, Huang Z, Fan Z, Xie D, He X (2016) Drainage, no-tillage and crop rotation decreases annual cumulative emissions of methane and nitrous oxide from a rice field in Southwest China Agriculture. Ecosyst Environ 233:270–281.  https://doi.org/10.1016/j.agee.2016.09.026 CrossRefGoogle Scholar
  19. He W, Yang J, Drury C, Smith W, Grant B, He P, Qian B, Zhou W, Hoogenboom G (2018) Estimating the impacts of climate change on crop yields and N2O emissions for conventional and no-tillage in Southwestern Ontario, Canada. Agric Syst 159:187–198.  https://doi.org/10.1016/j.agsy.2017.01.025 CrossRefGoogle Scholar
  20. Huang Y, Zhang W, Zheng X, Han S, Yu Y (2006) Estimates of methane emission from Chinese rice paddies by linking a model to GIS database. Acta Ecol Sin 26:980–988CrossRefGoogle Scholar
  21. Jarecki M, Grant B, Smith W, Deen B, Drury C, VanderZaag A, Qian B, Yang J, Wagner-Riddle C (2018) Long-term trends in corn yields and soil carbon under diversified crop rotations. J Environ Qual 47:635–643.  https://doi.org/10.2134/jeq2017.08.0317 CrossRefGoogle Scholar
  22. Katayanagi N, Furukawa Y, Fumoto T, Hosen Y (2012) Validation of the DNDC-Rice model by using CH4 and N2O flux data from rice cultivated in pots under alternate wetting and drying irrigation management. Soil Sci Plant Nutr 58:360–372.  https://doi.org/10.1080/00380768.2012.682955 CrossRefGoogle Scholar
  23. Katayanagi N, Fumoto T, Hayano M, Takata Y, Kuwagata T, Shirato Y, Sawano S, Kajiura M, Sudo S, Ishigooka Y, Yagi K (2016) Development of a method for estimating total CH4 emission from rice paddies in Japan using the DNDC-Rice model. Sci Total Environ 547:429–440.  https://doi.org/10.1016/j.scitotenv.2015.12.149 CrossRefGoogle Scholar
  24. Katayanagi N, Fumoto T, Hayano M, Shirato Y, Takata Y, Leon A, Yagi K (2017) Estimation of total CH4 emission from Japanese rice paddies using a new estimation method based on the DNDC-Rice simulation model. Sci Total Environ 601:346–355.  https://doi.org/10.1016/j.scitotenv.2017.05.090 CrossRefGoogle Scholar
  25. Kim S, Gutierrez J, Kim P (2012) Considering winter cover crop selection as green manure to control methane emission during rice cultivation in paddy soil. Agric Ecosyst Environ 161:130–136.  https://doi.org/10.1016/j.agee.2012.07.026 CrossRefGoogle Scholar
  26. Kim S, Lee C, Gutierrez J, Kim P (2013) Contribution of winter cover crop amendments on global warming potential in rice paddy soil during cultivation. Plant Soil 366:273–286.  https://doi.org/10.1007/s11104-012-1403-4 CrossRefGoogle Scholar
  27. Kraus D, Weller S, Klatt S, Santabarbara I, Haas E, Wassmann R, Werner C, Kiese R, Butterbach-Bahl K (2016) How well can we assess impacts of agricultural land management changes on the total greenhouse gas balance (CO2, CH4 and N2O) of tropical rice-cropping systems with a biogeochemical model? Agr Ecosyst Environ 224:104–115.  https://doi.org/10.1016/j.agee.2016.03.037 CrossRefGoogle Scholar
  28. Li C (1996) The DNDC model. In: Evaluation of soil organic matter models. Springer, pp 263–267Google Scholar
  29. Li C, Frolking S, Harriss R (1994) Modeling carbon biogeochemistry in agricultural soils. Global Biogeochem Cycles 8:237–254.  https://doi.org/10.1029/94GB00767 CrossRefGoogle Scholar
  30. Li C, Mosier A, Wassmann R, Cai Z, Zheng X, Huang Y, Tsuruta H, Boonjawat J, Lantin R (2004) Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Glob Biogeochem Cycles 18:GB1043.  https://doi.org/10.1029/2003GB002045 CrossRefGoogle Scholar
  31. Li H, Wang L, Qiu J, Li C, Gao M, Gao C (2014) Calibration of DNDC model for nitrate leaching from an intensively cultivated region of Northern China. Geoderma 223:108–118.  https://doi.org/10.1016/j.geoderma2014.01.002 CrossRefGoogle Scholar
  32. Li H, Wang L, Li J, Gao M, Zhang J, Zhang J, Qiu J, Deng J, Li C, Frolking S (2017a) The development of China-DNDC and review of its applications for sustaining Chinese agriculture. Ecol Model 348:1–13.  https://doi.org/10.1016/j.ecolmodel.2017.01.003 CrossRefGoogle Scholar
  33. Li Z, Yang J, Drury C, Yang X, Reynolds W, Li X, Hu C (2017b) Evaluation of the DNDC model for simulating soil temperature, moisture and respiration from monoculture and rotational corn, soybean and winter wheat in Canada. Ecol Model 360:230–243.  https://doi.org/10.1016/j.ecolmodel.2017.07.013 CrossRefGoogle Scholar
  34. Lu F, Wang X, Han B, Ouyang Z, Zheng H (2010) Straw return to rice paddy: soil carbon sequestration and increased methane emission. Chin J Appl Ecol 21:99–108Google Scholar
  35. Meyer-Aurich A, Weersink A, Janovicek K, Deen B (2006) Cost efficient rotation and tillage options to sequester carbon and mitigate GHG emissions from agriculture in Eastern Canada. Agric Ecosyst Environ 117:119–127.  https://doi.org/10.1016/j.agee.2006.03.023 CrossRefGoogle Scholar
  36. Minamikawa K, Yagi K, Tokida T, Sander B, Wassmann R (2012) Appropriate frequency and time of day to measure methane emissions from an irrigated rice paddy in Japan using the manual closed chamber method. Greenh Gas Meas Manag 2:118–128.  https://doi.org/10.1080/20430779.2012.729988 CrossRefGoogle Scholar
  37. Mosier A, Halvorson A, Reule C, Liu X (2006) Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J Environ Qual 35:1584–1598.  https://doi.org/10.2134/jeq2005.0232 CrossRefGoogle Scholar
  38. National development and Reform Commission (2016) The 13th five-year plan for economic and social development of the people’s republic of China (2016–2020). Central Compilation and Translation Press, BeijingGoogle Scholar
  39. Pan Q (2014) Agricultural nonpoint source pollution status and comprehensive control measures in China. Modern Agric Sci Technol 15(243):252Google Scholar
  40. Riya S, Zhou S, Kobara Y, Sagehashi M, Terada A, Hosomi M (2015) Effects of N loading rate on CH4 and N2O emissions during cultivation and fallow periods from forage rice fields fertilized with liquid cattle waste. J Environ Manage 161:124–130.  https://doi.org/10.1016/j.jenvman.2015.06.051 CrossRefGoogle Scholar
  41. Sainju U, Stevens W, Caesar-TonThat T, Liebig M (2012) Soil greenhouse gas emissions affected by irrigation, tillage, crop rotation, and nitrogen fertilization. J Environ Qual 41:1774–1786.  https://doi.org/10.2134/jeq2012.0176 CrossRefGoogle Scholar
  42. Scheehle E, Kruger D (2006) Global anthropogenic methane and nitrous oxide emissions. Energy J 3:33–44Google Scholar
  43. Simmonds M, Li C, Lee J, Six J, van Kessel C, Linquist B (2015) Modeling methane and nitrous oxide emissions from direct-seeded rice systems. J Geophys Res Biogeosci 120:2011–2035.  https://doi.org/10.1002/2015jg002915 CrossRefGoogle Scholar
  44. Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (2013) Climate change 2013: the physical science basis. In: Intergovernmental panel on climate change, working group I contribution to the IPCC 5th assessment report (AR5). Cambridge University Press, New YorkGoogle Scholar
  45. Su M, Kuang F, Lv Y, Shi X, Liu X, Shen J, Zhang F (2017) Nitrous oxide and methane emissions from paddy soils in southwest China. Geoderma Reg 8:1–11.  https://doi.org/10.1016/j.geodrs.2016.12.003 CrossRefGoogle Scholar
  46. Sun T, Zhou B (2006) Study on safety degree of Chinese land resource—based on carrying capacity of land resource in population as the standard. Resour Dev Market 22(4):345–348Google Scholar
  47. Sun H, Zhou S, Fu Z, Chen G, Zou G, Song X (2016a) A two-year field measurement of methane and nitrous oxide fluxes from rice paddies under contrasting climate conditions. Sci Rep 6:28255.  https://doi.org/10.1038/srep28255 CrossRefGoogle Scholar
  48. Sun H, Zhou S, Song X, Fu Z, Chen G, Zhang J (2016b) CH4 emission in response to water-saving and drought-resistance rice (WDR) and common rice varieties under different irrigation managements. Water Air Soil Pollut 227:47.  https://doi.org/10.1007/s11270-015-2741-7 CrossRefGoogle Scholar
  49. Tang H, Xiao X, Tang W, Yang G (2011) Effects of straw recycling of winter covering crop on methane and nitrous oxide emissions in paddy field. Acta Agron Sin 37:1666–1675.  https://doi.org/10.1016/S1875-2780(11)60045-X CrossRefGoogle Scholar
  50. Tang J, Liang S, Li Z, Zhang H, Wang S, Zhang N (2016) Emission laws and influence factors of greenhouse gases in Saline–Alkali paddy fields. Sustainability 8:14.  https://doi.org/10.3390/su8020163 CrossRefGoogle Scholar
  51. Uzoma K, Smith W, Grant B, Desjardins R, Gao X, Hanis K, Tenuta M, Goglio P, Li C (2015) Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the DNDC model. Agric Ecosyst Environ 206:71–83.  https://doi.org/10.1016/j.agee.2015.03.014 CrossRefGoogle Scholar
  52. Wang H, Zhang D, Zhang Y, Zhai L, Yin B, Zhou F, Geng Y, Pan J, Luo J, Gu B, Liu H (2018) Ammonia emissions from paddy fields are underestimated in China. Environ Pollut 235:482–488.  https://doi.org/10.1016/j.envpol.2017.12.103 CrossRefGoogle Scholar
  53. Xia L, Xia Y, Ma S, Wang J, Wang S, Zhou W, Yan X (2016) Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer. Biogeosciences 13:4569–4579.  https://doi.org/10.5194/bg-13-4569-2016 CrossRefGoogle Scholar
  54. Yang J, Yang J, Liu S, Hoogenboom G (2014) An evaluation of the statistical methods for testing the performance of crop models with observed data. Agric Syst 127:81–89.  https://doi.org/10.1016/j.agsy.2014.01.008 CrossRefGoogle Scholar
  55. Yu K, Wang Z, Vermoesen A, Patrick W Jr, Van Cleemput O (2001) Nitrous oxide and methane emissions from different soil suspensions: effect of soil redox status. Biol Fertil Soils 34:25–30.  https://doi.org/10.1007/s003740100350 CrossRefGoogle Scholar
  56. Yu D, Yang H, Shi X, Warner E, Zhang L, Zhao Q (2011) Effects of soil spatial resolution on quantifying CH4 and N2O emissions from rice fields in the Tai Lake region of China by DNDC model. Global Biogeochem Cycles.  https://doi.org/10.1029/2010gb003825 CrossRefGoogle Scholar
  57. Zhang Y, Niu H (2016) The development of the DNDC plant growth sub-model and the application of DNDC in agriculture: a review. Agric Ecosyst Environ 230:271–282.  https://doi.org/10.1016/j.agee.2016.06.017 CrossRefGoogle Scholar
  58. Zhang L, Yu D, Shi X, Weindorf D, Zhao L, Ding W, Wang H, Pan J, Li C (2009) Simulation of global warming potential (GWP) from rice fields in the Tai-Lake region, China by coupling 1:50,000 soil database with DNDC model. Atmos Environ 43:2737–2746.  https://doi.org/10.1016/j.atmosenv.2009.02.051 CrossRefGoogle Scholar
  59. Zhang Y, Li Z, Feng J, Zhang X, Jiang Y, Chen J, Zhang M, Deng A, Zhang W (2014) Differences in CH4 and N2O emissions between rice nurseries in Chinese major rice cropping areas. Atmos Environ 96:220–228.  https://doi.org/10.1016/j.atmosenv.2014.07.038 CrossRefGoogle Scholar
  60. Zhang Y, Sheng J, Wang Z, Chen L, Zheng J (2015) Nitrous oxide and methane emissions from a Chinese wheat–rice cropping system under different tillage practices during the wheat-growing season. Soil Tillage Res 146:261–269.  https://doi.org/10.1016/j.still.2014.09.019 CrossRefGoogle Scholar
  61. Zhang J, Hu K, Li K, Zheng C, Li B (2017) Simulating the effects of long-term discontinuous and continuous fertilization with straw return on crop yields and soil organic carbon dynamics using the DNDC model. Soil and Tillage Res 165:302–314.  https://doi.org/10.1016/j.still.2016.09.004 CrossRefGoogle Scholar
  62. Zhao Z, Zhang H, Li C, Zhao Q, Cao L (2014) Quantifying nitrogen loading from a paddy field in Shanghai, China with modified DNDC model. Agric Ecosyst Environ 197:212–221.  https://doi.org/10.1016/j.agee.2014.08.002 CrossRefGoogle Scholar
  63. Zheng H, Huang H, Yao L, Liu J, He H, Tang J (2014) Impacts of rice varieties and management on yield-scaled greenhouse gas emissions from rice fields in China: a meta-analysis. Biogeosciences 11:3685–3693.  https://doi.org/10.5194/bg-11-3685-2014 CrossRefGoogle Scholar
  64. Zheng H, Huang H, Zhang C, Li J (2016) National-scale paddy-upland rotation in Northern China promotes sustainable development of cultivated land. Agric Water Manag 170:20–25.  https://doi.org/10.1016/j.agwat.2016.01.009 CrossRefGoogle Scholar
  65. Zhong J, Wei Y, Wan H, Wu Y, Zheng J, Han S, Zheng B (2013) Greenhouse gas emission from the total process of swine manure composting and land application of compost. Atmos Environ 81:348–355.  https://doi.org/10.1016/j.atmosenv.2013.08.048 CrossRefGoogle Scholar
  66. Zou F, Zou F, Cao C, Ma J, Li C, Cai M, Wang J, Sun Z, Jiang Y (2018) Greenhouse gases emission under different cropping systems in the Jianghan Plain based on DNDC model Chinese. J Eco Agric 26:1291–1301.  https://doi.org/10.13930/j.cnki.cjea.180634 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural SciencesShanghaiChina
  2. 2.Shanghai Agrobiological Gene CenterShanghaiChina
  3. 3.Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA)ShanghaiChina

Personalised recommendations