Advertisement

Case study for hybrid power generation combining hydro- and photovoltaic energy resources in the Brazilian semiarid region

  • Maria Francisca Azeredo VellosoEmail author
  • Fernando Ramos Martins
  • Enio Bueno Pereira
Review
  • 38 Downloads

Abstract

Hydropower is currently the primary energy resource to service the Brazilian electricity sector. However, the dry seasons in the Brazilian semiarid region have become longer due to climate variability, and they have affected the operation of hydropower plants during the last decade. Brazil has a growing energy demand, and energy mix diversification is essential to meet the power capacity required to support sustainable development. Investments in photovoltaic power plants are already a robust strategy to foster a new cycle of socioeconomic development based on a low-carbon economy. Hybrid power generation using hydro- and solar energy resources can be an alternative source due to the seasonal complementarity between them in the Brazilian semiarid region. During the dry periods, the photovoltaic power plant can replace hydropower generation. The present study aimed to evaluate the contribution of a solar photovoltaic plant to increase power generation in the Sobradinho hydropower plant operating in the São Francisco River, the most important water resource in the Brazilian semiarid region. The results showed that the PV power plant contributes to saving water for other multiple usages and avoids emissions of greenhouse gases by thermal power plants in long periods of intense drought. According to the simulation results for the 2013–2015 period, the PV plant would add around 8350 GWh to the actual power generated in Sobradinho using an area smaller than 0.5% of its water reservoir surface. In addition, hybrid power generation would avoid emissions around 27.106 t CO2 released into the atmosphere by thermal power plants using fossil fuels during 3 years.

Graphical abstract

Keywords

Solar energy Photovoltaic Electricity generation Hybrid generation 

Notes

Acknowledgements

The authors thank the National Council for Scientific and Technological Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES) for their financial support to the authors. Thanks are also due to the National Institute for Science and Technology for Climate Change—Project Phase 2 (Grants FAPESP 2014/50848-9, CNPq 465501/2014-1, and CAPES/FAPS No 16/2014).

References

  1. ANA (2019) Bacia Hidrográfica do Rio São Francisco. http://www2.ana.gov.br/Paginas/servicos/saladesituacao/v2/saofrancisco.aspx. Accessed 14 Mar 2019
  2. ANEEL (2017) BIG—Banco de Informações de Geração. http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm. Accessed 4 Jan 2017
  3. Antoniolli A, Corporation CE, Reindl T (2014) A review on grid-connected PV systems in Brazil including system performance. In: 29th European photovoltaic solar energy conference and exhibition, pp 2747–2752Google Scholar
  4. CHESF (2019) Monitoramento do Rio São Francisco. Companhia Hidrelétrica do São Francisco. http://www.chesf.gov.br/sustentabilidade/Pages/MeioAmbiente/Monitoramento-do-Rio-Sao-Francisco.aspx. Accessed 14 Mar 2019
  5. De Alencar CA, Junio JU (2016) Usinas solares fotovoltaicas no Brasil : Panorama atual e perspectivas futuras. In: 12th IEEE/IAS International Conference on Industry Applications, CuritibaGoogle Scholar
  6. dos Santos RLP, Rosa LP, Arouca MC, Ribeiro AED (2013) The importance of nuclear energy for the expansion of Brazil’s electricity grid. Energy Policy 60:284–289.  https://doi.org/10.1016/j.enpol.2013.05.020 CrossRefGoogle Scholar
  7. EPE (2011) Anuário Estatístico de Energia Eleétrica 2011, Rio de JaneiroGoogle Scholar
  8. EPE (2014) NOTA TÉCNICA DEA 19/14: Inserção da Geração Fotovoltaica Distribuída no Brasil—Condicionantes e Impactos, Rio de JaneiroGoogle Scholar
  9. EPE (2015) Expansão da geração. 1 Leilão de Energia de Reserva de 2015. Participação dos Empreendimentos Solares Fotovoltaicos: Visão Geral. Rio de JaneiroGoogle Scholar
  10. EPE (2017) Anuário Estatístico de Energia Elétrica 2017—Ano Base 2016, Rio de JaneiroGoogle Scholar
  11. Godinho HP, Godinho AL (2003) Águas, peixes e pescadores do São Francisco das Minas Gerais, 1st edn. PUC Minas, Belo HorizonteGoogle Scholar
  12. Goldemberg J, Lucon O (2012) Energia, meio ambiente e desenvolvimento, 3rd edn. Editora da Universidade de São Paulo, São PauloGoogle Scholar
  13. Jardim CDS, Salamoni I, Rüther R (2004) O Potencial Dos Sistemas Fotovoltaicos Interligados À Rede Elétrica Em Áreas Urbanas : Dois Estudos De Caso. In: Procedings of the 5th Encontro de Energia no Meio Rural, CampinasGoogle Scholar
  14. Jong P, Sánchez AS, Esquerre K et al (2013) Solar and wind energy production in relation to the electricity load curve and hydroelectricity in the northeast region of Brazil. Renew Sustain Energy Rev 23:526–535.  https://doi.org/10.1016/j.rser.2013.01.050 CrossRefGoogle Scholar
  15. Jong P, Kiperstok A, Torres EA (2015) Economic and environmental analysis of electricity generation technologies in Brazil. Renew Sustain Energy Rev 52:725–739.  https://doi.org/10.1016/j.rser.2015.06.064 CrossRefGoogle Scholar
  16. Lima LC, Ferreira LA, Moraes FHBL (2017) Performance analysis of a grid connected photovoltaic system in northeastern Brazil. Energy Sustain Dev 37:79–85CrossRefGoogle Scholar
  17. Lorenzo E (2002) La energía que producen los sistemas fotovoltaicos conectados a la red : El mito del 1300 y “el cascabel del gato”. Era Sol 107:22–29Google Scholar
  18. Martins FR, Pereira EB (2011) Estudo comparativo da confiabilidade de estimativas de irradiação solar para o sudeste brasileiro obtidas a partir de dados de satélite e por interpolação/extrapolação de dados de superfície. Rev Bras Geofis 29:265–276.  https://doi.org/10.1590/S0102-261X2011000200005 CrossRefGoogle Scholar
  19. Martins FR, Pereira EB, Silva SAB et al (2008) Solar energy scenarios in Brazil, Part one: resource assessment. Energy Policy 36:2843–2854.  https://doi.org/10.1016/j.enpol.2008.02.014 Google Scholar
  20. Martins DDMF, Chagas RM, Melo Neto JDO, Méllo Júnior AV (2011) Impactos da construção da usina hidrelétrica de Sobradinho no regime de vazões no Baixo São Francisco. Rev Bras Eng Agrícola e Ambient 15:1054–1061.  https://doi.org/10.1590/S1415-43662011001000010 CrossRefGoogle Scholar
  21. Martins FR, Abreu SL, Pereira EB (2012) Scenarios for solar thermal energy applications in Brazil. Energy Policy 48:640–649.  https://doi.org/10.1016/j.enpol.2012.05.082 CrossRefGoogle Scholar
  22. Medeiros GOS, Lima JWM, Lima LMM, de Queiroz AR (2018) Weight limits in the DEA benchmarking model for Brazilian electricity distribution companies. In: 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE). IEEE, pp 1–6Google Scholar
  23. Moretto EM, Gomes CS, Roquetti DR, Jordão CDO (2012) Histórico, tendências e perspectivas no planejamento espacial de usinas hidrelétricas brasileiras: a antiga e atual fronteira Amazônica. Ambient Soc 15:141–164.  https://doi.org/10.1590/S1414-753X2012000300009 CrossRefGoogle Scholar
  24. NEEE (2015) Capacidade Instalada de Geração Elétrica Capacidade Instalada de Geração no Mundo.Google Scholar
  25. ONS (2019) Operador Nacional do Sistema. http://www.ons.org.br/. Accessed 14 Mar 2019
  26. Pereira EB, Martins FR, Gonçalves AR, Costa RS, Lima FJL, Rüther R, Abreu SL, Tiepolo GM, Pereira SV, Souza JF (2017) ATLAS Brasileiro de energia Solar, 2nd edn. INPE, São José dos CamposGoogle Scholar
  27. Pimentel F (2011) O Fim da Era do Petróleo e a Mudança do Paradigma Energético Mundial: Perspectivas e Desafios para a Atuação Diplomática Brasileira. Ministério das Relações Exteriores, BrasiliaGoogle Scholar
  28. Pinto HQ Jr, Almeida ELF, Bomtempo JV et al (2007) Economia da Energia Fundamentos Econômicos, Evolução Histórica e Organização Industrial, 1st edn. Elsevier, Rio de JaneiroGoogle Scholar
  29. Queiroz AR (2016) Stochastic hydro-thermal scheduling optimization: an overview. Renew Sustain Energy Rev 62:382–395.  https://doi.org/10.1016/j.rser.2016.04.065 CrossRefGoogle Scholar
  30. Queiroz AR, Faria VAD, Lima LMM, Lima JWM (2019) Hydropower revenues under the threat of climate change in Brazil. Renew Energy 133:873–882.  https://doi.org/10.1016/j.renene.2018.10.050 CrossRefGoogle Scholar
  31. Rüther R, Salamoni I, Montenegro A, et al (2008) PROGRAMA DE TELHADOS SOLARES FOTOVOLTAICOS CONECTADOS À REDE ELÉTRICA PÚBLICA NO BRASIL. In: XII Encontro nacional de Tecnologia do Ambiente Construido. Fortaleza, pp 100–110Google Scholar
  32. Santos MA, Rosa LP, Sikar B et al (2006) Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. Energy Policy 34:481–488.  https://doi.org/10.1016/j.enpol.2004.06.015 CrossRefGoogle Scholar
  33. Soito JLDS, Freitas MAV (2011) Amazon and the expansion of hydropower in Brazil: vulnerability, impacts and possibilities for adaptation to global climate change. Renew Sustain Energy Rev 15:3165–3177.  https://doi.org/10.1016/j.rser.2011.04.006 CrossRefGoogle Scholar
  34. Steel W (2016) Spain Closes In on 50 Percent Renewable Power Generation. Renewable Energy World. September, 2016. https://www.renewableenergyworld.com/articles/2016/09/spain-closes-in-on-50-percent-renewable-power-generation.html
  35. Tundisi JG (2007) Exploração do potencial hidrelétrico da Amazônia. Estud Avançados 21:109–117CrossRefGoogle Scholar
  36. Ueckerdt F, Brecha R, Luderer G (2015) Analyzing major challenges of wind and solar variability in power systems. Renew Energy 81:1–10.  https://doi.org/10.1016/j.renene.2015.03.002 CrossRefGoogle Scholar
  37. Velloso MFA (2017) Possibilidade de Geração Híbrida Hidro-Solar na Bacia do São Francisco. PhD. thesys. Instituto Nacional de Pesquisas Espaciais, São José dos CamposGoogle Scholar
  38. Wehrmann B (2018) Renewables hit record as concerns over German govt quarrels grow. Clean Energy Wire, July, 2018. https://www.cleanenergywire.org/news/renewables-hit-record-concerns-over-german-govt-quarrels-grow
  39. Winemiller KO, McIntyre PB, Castello L et al (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351:128–129.  https://doi.org/10.1126/science.aac7082 CrossRefGoogle Scholar
  40. World Bank (2019) Electric power consumption. http://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC?end=2013&start=2013&view=map. Accessed 14 Mar 2019

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Maria Francisca Azeredo Velloso
    • 1
    • 2
    Email author
  • Fernando Ramos Martins
    • 3
  • Enio Bueno Pereira
    • 1
  1. 1.Earth System Sciences CenterNational Institute for Spatial ResearchSão José dos CamposBrazil
  2. 2.National Center for Monitoring and Early-Warning of Natural DisastersSão José dos CamposBrazil
  3. 3.Department of Sea ScienceBrazilian Federal University of São PauloSantosBrazil

Personalised recommendations