Advertisement

Clean Technologies and Environmental Policy

, Volume 19, Issue 8, pp 2113–2127 | Cite as

Use of 3D printing for biofuel production: efficient catalyst for sustainable biodiesel production from wastes

  • M. E. Borges
  • L. Hernández
  • J. C. Ruiz-Morales
  • P. F. Martín-Zarza
  • J. L. G. Fierro
  • P. EsparzaEmail author
Original Paper

Abstract

This work deals with the sustainable biodiesel production from low-cost renewable feedstock (waste and non-edible oils) using a heterogeneous catalyst constituted by potassium loaded on an amorphous aluminum silicate naturally occurring as volcanic material (pumice). The main challenge to biodiesel production from low-quality oils (used oils and greases) is the high percentage of free fatty acids (FFAs) and water in the feedstock that causes undesirable side reactions. The catalytic materials studied were tested in the transesterification reaction when using low-quality oils containing a high proportion of free fatty acids (FFAs) and water. Results indicated that the amount of acid and basic sites on the catalytic surface increases upon increasing potassium loading in the catalyst, displaying better performance for biodiesel production. Indeed, the modification of the aluminum silicate substrate upon potassium incorporation results in a catalytic material containing both acidic and basic sites, which are responsible for both triglycerides transesterification and FFA esterification reactions. The studied catalyst not only showed good performance in the biodiesel production reaction but also good tolerance to FFA and water contained in the feedstock for biodiesel production. The catalytic material was microstructured by 3D printing in order to design a catalytic stirring system with high mechanical strength, efficient and reusable. The use of 3D printing in biofuel production is a novelty that brings good solutions for catalyst production.

Keywords

Biodiesel Heterogeneous catalyst Waste oil Non-edible oil Esterification/transesterification 3D printing 

Notes

Acknowledgements

This work was supported by the Research Projects of the Spanish Ministry of Economy and Competitiveness: ENE2013-47826-C4-1-R and ENE2016-74889-C4-2-R.

Supplementary material

Supplementary material 1 (MOV 12079 kb)

Supplementary material 2 (MOV 95,729 kb)

References

  1. Álvarez-Galván MC, Brito A, García-Álvarez FJ, De la Peña O’Shea VA, Borges E, Pawelec B (2008) Catalytic behaviour of bifunctional pumice-supported and zeolite/pumice hybrid catalysts for n-pentane hydroisomerization. Appl Catal A 350:38–45CrossRefGoogle Scholar
  2. Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366CrossRefGoogle Scholar
  3. Arrigo I, Catalfamo P, Cavallari L, Di Pasquale S (2007) Use of zeolitized pumice waste as a water softening agent. J Hazard Mater 147:513–517CrossRefGoogle Scholar
  4. Asano K, Ohnishi C, Iwamoto S, Shioya Y, Inoue M (2008) Potassium-doped Co3O4 catalyst for direct decomposition of N2O. Appl Catal B 78:242–249CrossRefGoogle Scholar
  5. Atadashi I, Aroua M, Abdul Aziz A, Sulaiman N (2012) The effects of water on biodiesel production and refining technologies: a review. Renew Sustain Energy Rev 16:3456–3470CrossRefGoogle Scholar
  6. Boey PL, Ganesan S, Maniam GP, Khairuddean M, Lim SL (2012) A new catalyst system in transesterification of palm olein: tolerance of water and free fatty acids. Energy Convers Manag 56:46–52CrossRefGoogle Scholar
  7. Borges ME, Díaz L (2013) Catalytic packed-bed reactor configuration for biodiesel production using waste oil as feedstock. Bioenergy Res 6(1):222–228CrossRefGoogle Scholar
  8. Borges ME, Díaz L, Alvarez-Galván MC, Brito A (2011a) High performance heterogeneous catalyst for biodiesel production from vegetal and waste oil at low temperature. Appl Catal B 102:310–315CrossRefGoogle Scholar
  9. Borges ME, Díaz L, Gavín J, Brito A (2011b) Estimation of the content of fatty acid methyl esters (FAME) in biodiesel samples from dynamic viscosity measurements. Fuel Process Technol 92:597–599CrossRefGoogle Scholar
  10. Borges ME, Ruiz-Morales JC, Díaz L (2013) Improvement of biodiesel production through microstructural engineering of a heterogeneous catalyst. J Ind Eng Chem 19(3):791–796CrossRefGoogle Scholar
  11. Buasri A, Chaiyut N, Loryuenyong V, Rodklum Ch, Chaikwan T, Kumphan N, Jadee K, Klinklom P, Wittayarounayut W (2012) Transesterification of waste frying oil for synthesizing biodiesel by KOH supported on coconut shell activated carbon in packed bed reactor. Sci Asia 38:283–288CrossRefGoogle Scholar
  12. Canakci M (2007) The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour Technol 98:183–190CrossRefGoogle Scholar
  13. Canakci M, Gerpen JV (1999) Biodiesel production via acid catalysis. Trans Am Soc Agric Eng 42:1203–1210CrossRefGoogle Scholar
  14. Chang PH, Li Z, Yu TL, Munkhbayer S, Kuo TH, Hung YC, Jean JS, Lin KH (2009) Sorptive removal of tetracycline from water by palygorskite. J Hazard Mater 165:48–155CrossRefGoogle Scholar
  15. Chang PH, Li Z, Jean JS, Jiang WT, Wang CJ, Lin KH (2011) Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite. Appl Clay Sci 67–68:158–163Google Scholar
  16. Chang F, Zhou Q, Pan H, Liu Q, Zhang H, Xue Y, Yang S (2014) Solid mixed-metal-oxide catalysts for biodiesel production: a review. Energy Technol 2(11):865–873CrossRefGoogle Scholar
  17. Chouhan AP, Sarma AK (2013) Biodiesel production from Jatropha curcas L. oil using Lemna perpusilla Torrey ash as heterogeneous catalyst. Biomass Bioenergy 55:386–389CrossRefGoogle Scholar
  18. Chua CK, Leong KF (2014) 3D printing and additive manufacturing: principles and applications. World Scientific, SingaporeCrossRefGoogle Scholar
  19. Chuah L, Klemes J, Yusup S, Bokhari A, Akbar M (2017) Influence of fatty acids in waste cooking oil for cleaner biodiesel. Clean Tecnol Environ Policy 19:859CrossRefGoogle Scholar
  20. Chuang X, Mirano M, Inagaki M (2004) Preparations and photocatalytic performance of anatase-mounted natural porous silica, pumice, by hydrolysis under hydrothermal conditions. Colloids Surf B Environ 51:255–260Google Scholar
  21. Chun KY, Lee CJ (2008) Potassium doping in the double-walled carbon nanotubes at room temperature. J Phys Chem C 112:4492–4497CrossRefGoogle Scholar
  22. Costa AA, Braga PRS, de Macedo JL, Diaz JA, Dias SCL (2012) Structural effects of WO3 incorporation on USY zeolite and application to free fatty acids esterification. Microporous Mesoporous Mater 147(1):142–148CrossRefGoogle Scholar
  23. Demirbas A (2006) Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energy Convers Manage 47:2271–2282CrossRefGoogle Scholar
  24. Di Serio M, Tesser R, Pengmei L, Santacesaria E (2008) Heterogeneous catalysts for biodiesel production. Energy Fuels 22(1):207–217CrossRefGoogle Scholar
  25. Díaz L, Borges ME (2012) Low-quality vegetable oils as feedstock for biodiesel production using K-Pumice as solid catalyst. Tolerance of water and free fatty acids contents. J Agric Food Chem 60:7928–7933CrossRefGoogle Scholar
  26. Dossin TF, Reyniers MF, Berger RJ, Marin GB (2006) Simulation of heterogeneously MgO-catalyzed transesterification for fine-chemical and biodiesel industrial production. Appl Catal B 67(1–2):136–148CrossRefGoogle Scholar
  27. E.N. Communication from the Commission on the practical implementation of the EU biofuels and bioliquids sustainability scheme and on counting rules for biofuels. Official Journal of the European Union, EN2010/C 160/02Google Scholar
  28. Ersoy B, Sariisik A, Dikmen S, Sariisik G (2010) Characterization of acidic pumice and determination of its electrokinetic properties in water. Powder Technol 197:129–135CrossRefGoogle Scholar
  29. Farooq M, Ramli A (2015) Optimization of process parameters for the production of biodiesel from waste cooking oil in the presence of bifunctional γ–Al2O3–CeO2 supported catalysts. Malasyan J Anal Sci 19(1):8–19Google Scholar
  30. Farooq M, Ramli A, Subbarao D (2013) Biodiesel production from waste cooking oil using bifunctional heterogeneous solid catalyst. J Clean Prod 59:131–140CrossRefGoogle Scholar
  31. Feng Y, Zhang A, Li J, He B (2011) A continuous process for biodiesel production in a fixed bed reacator packed with cation exchange resin as heterogeneous catalyst. Biores Technol 102:3607–3609CrossRefGoogle Scholar
  32. Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92(5):405–416CrossRefGoogle Scholar
  33. Gallastegui G, Elías A, Ruiz-Morales JC (2011) Fabrication of Yttria-stabilized Zirconia-based honeycomb biofilters. Int J Appl Ceram Technol 8(6):1305–1311CrossRefGoogle Scholar
  34. García-Sancho C, Moreno-Tost R, Mérida-Robles JM, Santamaría-González J, Jiménez-López A, Maireles-Torres P (2011) Niobium-containing MCM-41 silica catalysts for biodiesel production. App Catal B Environ 108–109:161–167CrossRefGoogle Scholar
  35. Gelbard G, Brès O, Vargas RM, Vielfaure F, Schuchardt UF (1995) 1H nuclear magnetic resonance determination of the yield of the transesterification of rapeseed oil with methanol. J Am Oil Chem Soc 72:1239–1241CrossRefGoogle Scholar
  36. Georgiani KG, Katsoulidis AK, Pomonis PJ, Manos G, Kontominas MG (2009) Transesterification of rapeseed oil for the production of biodiesel using homogeneous and heterogeneous catalysis. Fuel Process Technol 90:1016–1022CrossRefGoogle Scholar
  37. Grym R (1968) Clay mineralogy. McGraw-Hill, New YorkGoogle Scholar
  38. Guler U, Sarioglu M (2014) Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies. J Environ Health Sci Eng 12:79CrossRefGoogle Scholar
  39. Huhler M, Schlögl R, Ertl G (1992) The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene. Surface chemistry of the active phase. J Catal 138:413CrossRefGoogle Scholar
  40. Jacobson K, Gopinath R, Meher LC, Dalai AK (2008) Solid acid catalyzed biodiesel production from waste cooking oil. Appl Catal B Environ 85:86–91CrossRefGoogle Scholar
  41. Jiang W, Lu H, Qi T, Yan S, Liang B (2010) Preparation, application, and optimization of Zn/Al complex oxides for biodiesel production under sub-critical conditions. Biotechnol Adv 28:620–627CrossRefGoogle Scholar
  42. Juan JC, Kartika DA, Wu TY, Hin TYY (2011) Biodieselproduction from jatropha oil by catalytic and non-catalytic approaches: an overview. Bioresour Technol 102:452–460CrossRefGoogle Scholar
  43. Knothe G (2010) Biodiesel: current trends and properties. Top Catal 53:714–720CrossRefGoogle Scholar
  44. Koshizaki N, Umehara H, Oyama T (1998) XPS characterization and optical properties of Si/SiO2, Si/Al2O3 and Si/MgO co-sputtered films. Thin Solid Films 325(1–2):130–136CrossRefGoogle Scholar
  45. Kusdiana D, Saka S (2004) Two-step preparation for catalyst-free biodiesel fuel production: hydrolysis and methyl esterification. Appl Biochem Biotechnol 115:781–791CrossRefGoogle Scholar
  46. Lee A, Bennett J, Manayil J, Wilson K (2014) Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem Soc Rev 43:7887–7916CrossRefGoogle Scholar
  47. Lee J, Tan W, An J, Chua Ch, Tang Ch, Fane A, Chong T (2016) The potential to enhance membrane module design with 3 D printing technology. J Membr Sci 499:480–490CrossRefGoogle Scholar
  48. Li S, Kang ET, Neoh KG, Ma ZH, Tan KL, Huang W (2001) In situ XPS studies of thermally deposited potassium on poly(p-phenylene vinylene) and its ring-substituted derivatives. Appl Surf Sci 181:201CrossRefGoogle Scholar
  49. Li Y, Qiu F, Yang D, Li X, Sun P (2011) Preparation characterization and application of heterogeneous solid base catalyst for biodiesel production from soybean oil. Biomass Bioenergy 35:1787–1795Google Scholar
  50. Li Z, Lin P, Wu J, Huang Y, Lin K, Wu K (2013) A stirring packed-bed reactor to enhance the esterification–transesterification in biodiesel production by lowering mass-transfer resistance. Chem Eng J 234:9–15CrossRefGoogle Scholar
  51. Lopez DE, Goodwin JG Jr, Bruce DA, Furuta S (2008) Esterification and transesterification using modified-zirconia catalysts. Appl Catal A 339:7683CrossRefGoogle Scholar
  52. Lotero E, Liu Y, López DE, Suwannakarn K, Bruce DA, Goodwin JG (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44:5353–5363CrossRefGoogle Scholar
  53. Ma F, Hanna MA (1999) Biodiesel production: a review. Biores Technol 70(1):1–15CrossRefGoogle Scholar
  54. Ma F, Clements LD, Hanna MA (1998) The effects of catalyst, free fatty acids, and water on transesterification of beef tallow. Trans Am Soc Agric Eng 41(5):1261–1264CrossRefGoogle Scholar
  55. MacLeod CS, Harvey AP, Lee AF, Wilson K (2008) Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production. Chem Eng J 135(1–2):63–70CrossRefGoogle Scholar
  56. Marchetti JM, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sustain Energy Rev 11(6):300–1311CrossRefGoogle Scholar
  57. Mollah M, Promreuk S, Schennach R, Cocke D, Guler R (1999) Cristobalite formation from thermal treatment of Texas lignite fly ash. Fuel 78:1277–1282CrossRefGoogle Scholar
  58. Morales G, Bautista LF, Melero JA, Iglesias J, Sánchez-Vázquez R (2011) Low-grade oils and fats: effect of several impurities on biodiesel production over sulfonic acid heterogeneous catalysts. Bioresour Technol 102:9571–9578CrossRefGoogle Scholar
  59. Nasreen S, Liu H, Skala D, Waseem A, Wan L (2015) Preparation of biodiesel from soybean oil using La/Mn oxide catalyst. Fuel Process Technol 131:290–296CrossRefGoogle Scholar
  60. Nigam P, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68CrossRefGoogle Scholar
  61. Noiroj K, Intarapong P, Luengnaruemitchai A, Jai-In S (2009) A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renew Energy 34(4):1145–1150CrossRefGoogle Scholar
  62. Qiu Z, Zhao L, Weatherley L (2010) Process intensification technologies in continuous biodiesel production. Chem Eng Process 49(4):323–330CrossRefGoogle Scholar
  63. Ruiz-Morales JC, Marrero-López D, Gálvez M, Canales-Vázquez J, Savaniu C, Savvin S (2010) Engineering of materials for solid oxide fuel cells and other energy and environmental applications. Energy Environ Sci 3(11):1670CrossRefGoogle Scholar
  64. Sani YM, Daud WMAW, Abdul Aziz AR (2013) Solid acid-catalyzed biodiesel production from microalgal oil-The dual advantage. J Environ Chem Eng 1:113–121CrossRefGoogle Scholar
  65. Sani Y, Daud W, Aziza A (2014) Activity of solid acid catalysts for biodiesel production: a critical review. Appl Catal A 470:140–161CrossRefGoogle Scholar
  66. Sankaranarayanan S, Antonyraj CA, Kannan S (2012) Transesterification of edible, non-edible and used cooking oils for biodiesel production using calcined layered double hydroxides as reusable base catalysts. Bioresour Technol 109:57–62CrossRefGoogle Scholar
  67. Santacesaria E, Martinez Vicente G, Di Serio M, Tesser R (2012) Main technologies in biodiesel production: state of the art and future challenges. Catal Today 195:2–13CrossRefGoogle Scholar
  68. Sasidharan M, Hegde SG, Kumar R (1998) Surface acidity of Al-, Ga- and Fe-silicate analogues of zeolite NCL-1 characterized by FTIR, TPD (NH3) and catalytic methods. Microporous Mesoporous Mater 24:59–67CrossRefGoogle Scholar
  69. Soetaredjo F, Ayucitra A, Ismadji S, Maukar A (2011) KOH/bentonite catalysts for transesterification of palm oil to biodiesel. Appl Clay Sci 53(2):341–346CrossRefGoogle Scholar
  70. Sun H, Ding YQ, Duan JZ, Zhang QJ, Wang ZY, Lou H, Zheng XM (2010) Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst. Bioresour Technol 101:953–958CrossRefGoogle Scholar
  71. Tan KT, Lee KT, Mohamed AR (2010) Effects of free fatty acids, water content and co-solvent on biodiesel production by supercritical methanol reaction. J Supercrit Fluids 53:88–91CrossRefGoogle Scholar
  72. Tesser R, Vitiello R, Carotenuto G, Garcia Sancho C, Vergara A, Maireles Torres PJ, Li C, Di Serio M (2015) Niobia supported on silica as a catalyst for Biodiesel production from waste oil. Catal Sustain Energy 2:33–42Google Scholar
  73. Thanh L, Okitsu K, Van Boi L, Maeda Y (2012) Catalytic technologies for biodiesel fuel production and utilization of glycerol: a review. Catalysts 2:191–222CrossRefGoogle Scholar
  74. Tiwari AK, Kumar A, Raheman H (2007) Biodiesel production from jatropha oil (Jatrophacurcas) with high free fatty acids: an optimized process. Biomass Bioenergy 31:569–575CrossRefGoogle Scholar
  75. Tomasevic A, Siler-Marinkovic S (2003) Methanolysis of used frying oil. Fuel Process Technol 81:1–6CrossRefGoogle Scholar
  76. Umdu ES, Seker E (2012) Transesterification of sunflower oil on single step sol–gel made Al2O3 supported CaO catalysts: effect of basic strength and basicity on turnover frequency. Biores Technol 106:178–181CrossRefGoogle Scholar
  77. Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107CrossRefGoogle Scholar
  78. Veilletter M, Giroir-Fendler A, Faucheux N, Heitz M (2017) Esterification of free fatty acids with methanol to biodiesel using heterogeneous catalysts: from model acid oil to microalgae lipids. Chem Eng J 308:101–109CrossRefGoogle Scholar
  79. Vicente G, Martinez M, Aracil J (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Biores Technol 92:297–305CrossRefGoogle Scholar
  80. Yan S, Salley SO, Simon Ng KY (2009a) Simultaneous transesterification and esterification of unrefined or waste oils over ZnO-La2O3 catalyst. Appl Catal A Gen 353:203–212CrossRefGoogle Scholar
  81. Yan S, Kim M, Salley SO, Simon KYNG (2009b) Oil transesterification over calcium oxides modified with lanthanum. Appl Catal A Gen 360:163–170CrossRefGoogle Scholar
  82. Zafiropoulos NA, Ngo HL, Foglia TA, Samulski ET, Lin W (2007) Catalytic synthesis of biodiesel from high free fatty acid-containing feedstocks. Chem Commun 35:3670–3672CrossRefGoogle Scholar
  83. Zhang X, Ma Q, Cheng B, Wang J, Li J, Nie F (2012) Research on KOH/La–Ba Al2 O3 catalysts for biodiesel production via transesterification from microalgae oil. J Nat Gas Chem 21:774–779CrossRefGoogle Scholar
  84. Zhao Q, Wang H, Zheng H, Sun Z, Shi W, Wang S, Wang X, Jiang Z (2013) Acid–base bifunctional HPA nanocatalysts promoting heterogeneous transesterification and esterification Reactions. Catal Sci Technol 3:2204CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • M. E. Borges
    • 1
  • L. Hernández
    • 2
  • J. C. Ruiz-Morales
    • 2
  • P. F. Martín-Zarza
    • 2
  • J. L. G. Fierro
    • 3
  • P. Esparza
    • 2
    Email author
  1. 1.Chemical Engineering DepartmentUniversity of La LagunaLa LagunaSpain
  2. 2.Inorganic Chemistry DepartmentUniversity of La LagunaTenerifeSpain
  3. 3.Institute of Catalysis and Petroleum Chemistry, CSICMadridSpain

Personalised recommendations