Clean Technologies and Environmental Policy

, Volume 19, Issue 1, pp 279–286 | Cite as

Forecast of solar power: a key to power management and environmental protection

  • Shravanth M. Vasisht
  • Sheela K. Ramasesha
Brief Communication


Power management through the day and through different seasons in the year is a major challenge in cities around the world as the power generation is from a mix of resources. It is difficult to predict, a priori, the yield from renewable resources on a particular day to tune the fossil fuel fired generators leading to less control of atmospheric pollution from these plants. In this paper, we present a model to predict the yield from a solar photovoltaic (SPV) plant based on the weather forecast in the location. This model can be deployed in the management of distributed energy generation system consisting of SPV systems. The deviations of this model from the measured values are <15 % for most of the days. The methodology adopted in arriving at this model can be used in any location. This model is simple to use as it uses performance data from a SPV plant in a location and the weather forecast data available in the public domain. Hence, it would be a powerful tool for private solar power producers availing net-metering facility.


Prediction of yield Solar photovoltaic system Multivariate regression Power management 


  1. Andrews RW, Pearce JM (2013) The effect of spectral albedo on amorphous silicon and crystalline silicon solar photovoltaic device performance. Sol Energy 91:233–241. doi: 10.1016/j.solener.2013.01.030 CrossRefGoogle Scholar
  2. Armstrong S, Hurley WG (2010) A new methodology to optimize solar energy extraction under cloudy conditions. Renew Energy 35:780–787. doi: 10.1016/j.renene.2009.10.018 CrossRefGoogle Scholar
  3. Bridge to India (2015) Rooftop revolution: unleashing Delhi’s solar potential, New Delhi: Bridge to India. Accessed 3 May 2013
  4. California Energy Commission (2015) California electricity data, facts, and statistics. Accessed 3 Sept 2015
  5. Chen SX, Gooi HB, Wang MQ (2013) Solar radiation forecast based on fuzzy logic and neural networks. Renew Energy 60:195–201. doi: 10.1016/j.renene.2013.05.011 CrossRefGoogle Scholar
  6. Congedo PM, Malvoni M, Mele M, Giorgi MGD (2013) Performance measurements of monocrystalline silicon PV modules in South-eastern Italy. Energy Convers Manag 68:1–10. doi: 10.1016/j.enconman.2012.12.017 CrossRefGoogle Scholar
  7. Conserval Engineering Inc. (2015) Solar power wall. Accessed 16 Sept 2015
  8. Darwish ZA, Kazem HA, Sopian K, Goul MAA, Alawadhi H (2015) Effect of dust pollutant type on photovoltaic performance. Renew Sustain Energy Rev 41:735–744. doi: 10.1016/j.rser.2014.08.068 CrossRefGoogle Scholar
  9. Eldridge RG (1967) Water vapour absorption of visible and near infrared radiation. Appl Opt 6(4):709–713. doi: 10.1364/AO.6.000709 CrossRefGoogle Scholar
  10. Energy Institute of Haas (2015) What’s the point of an electricity storage mandate?. Accessed 12 July 2015
  11. Fard AK, Khosravi A, Nahavandi S (2016) A new fuzzy-based combined prediction interval for wind power forecasting. IEEE Trans Power Syst 31(1):18–26. doi: 10.1109/TPWRS.2015.2393880 CrossRefGoogle Scholar
  12. Fraunhofer Institute for Solar Energy Systems (2014) Electricity production from solar and wind in Germany in 2014. Accessed 25 Sept 2015
  13. Gridwatch (2015) UK National Grid Status. Accessed 26 Sept 2015
  14. Gwandu BAL, Creasey DJ (1995) Humidity: a factor in the appropriate positioning of a photovoltaic power station. Renew Energy 6(3):313–316. doi: 10.1016/0960-1481(95)00073-S CrossRefGoogle Scholar
  15. Ho WS, Hashim H, Lim JS, Klemes JJ (2013) Combined design and load shifting for distributed energy system. Clean Technol Environ Policy 15:433–444. doi: 10.1007/s10098-013-0617-3 CrossRefGoogle Scholar
  16. Hocaoglu FO, Gerek ON, Kurban M (2008) Hourly solar radiation forecasting using optimal coefficient 2-D linear filters and feed-forward neural networks. Sol Energy 82:714–726. doi: 10.1016/j.solener.2008.02.003 CrossRefGoogle Scholar
  17. Iyengar S, Sharma N, Irwin D, Shenoy P, Ramamritham K (2014) Demo Abstract: SolarCast—an open web service for predicting solar power generation in smart homes. In: Proceedings of the 1st ACM conference on embedded systems for energy-efficient buildings, vol 14, New York, USA. BuildSys, pp 174–175Google Scholar
  18. Kumar P, Ojha SP, Singh R, Kishtawal CM, Pal PK (2015) Performance of weather research and forecasting model with variable horizontal resolution. Theor Appl Climatol 122:1–9. doi: 10.1007/s00704-015-1607-7 CrossRefGoogle Scholar
  19. Kymakis K, Kalykakis S, Papazoglou TM (2008) Performance analysis of a grid connected photovoltaic park on the island of Crete. Energy Convers Manag 50:433–438. doi: 10.1016/j.enconman.2008.12.009 CrossRefGoogle Scholar
  20. Mekhilef S, Saidur R, Kamalisarvestani M (2012) Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew Sustain Energy Rev 16:2920–2925. doi: 10.1016/j.rser.2012.02.012 CrossRefGoogle Scholar
  21. Mer S, Dudhe S, Suryawanshi S (2015) Future trends in distributed renewable systems. Int J Eng Res Electron Commun Eng 2(6):7–10Google Scholar
  22. Molg T, Cullen NJ, Kaser G (2008) Solar radiation, cloudiness and longwave radiation over low-latitude glaciers: implications for mass-balance modelling. J Glaciol 55(190):292–302. doi: 10.3189/002214309788608822 CrossRefGoogle Scholar
  23. National Renewable Energy Laboratory (2011) 2010 solar technologies market report. Accessed 2 June 2015
  24. Nishioka K, Hatayama T, Uraoka Y, Fuyuki T, Hagihara R, Watanabe M (2003) Field-test analysis of PV system output characteristics focusing on module temperature. Sol Energy Mater Sol Cells 75:665–671CrossRefGoogle Scholar
  25. NASA Earth Observation (2014) Aerosol optical thickness—(1 month—Aqua/MODIS), Oct. 24, 2014. Accessed 24 Oct 2014
  26. Panwar NL, Shrirame HY, Bamniya BR (2010) CO2 mitigation potential from biodiesel of castor seed oil in Indian context. Clean Technol Environ Policy 12:579–582. doi: 10.1007/s10098-009-0269-5 CrossRefGoogle Scholar
  27. Paoli C, Voyant C, Muselli M, Nivet ML (2010) Forecasting of preprocessed daily solar radiation time series using neural networks. Sol Energy 84:2146–2160. doi: 10.1016/j.solener.2010.08.011 CrossRefGoogle Scholar
  28. Paoli C, Voyant C, Muselli M, Nivet ML (2015) A 10 year solar radiation forecasting using ad-hoc time series preprocessing and neural networks. Remote Sens 7:7768–7784. doi: 10.1007/978-3-642-04070-2_95 CrossRefGoogle Scholar
  29. Pelland S, Galanis G, Kallos G (2011) Solar and photovoltaic forecasting through post-processing of the Global Environmental Multiscale numerical weather prediction model. Prog Photovolt Res Appl 21:284–296. doi: 10.1002/pip.1180 CrossRefGoogle Scholar
  30. Pfister G, McKenzie RL, Liley JB, Thomas A, Forgan BW, Long CN (2003) Cloud coverage based on all-sky imaging and its impact on surface solar irradiance. J Appl Meteorol 42(10):1421–1434. doi: 10.1175/1520-0450(2003)042<1421:CCBOAI>2.0.CO;2 CrossRefGoogle Scholar
  31. Priya GSK, Bandyopadhyay S (2013) Emission constrained power system planning: a pinch analysis based study of Indian electricity sector. Clean Technol Environ Policy 15:771–782. doi: 10.1007/s10098-012-0541-y CrossRefGoogle Scholar
  32. Ramachandra TV, Shruthi BV (2007) Spatial mapping of renewable energy potential. Renew Sustain Energy Rev 11:1460–1480. doi: 10.1016/j.rser.2005.12.002 CrossRefGoogle Scholar
  33. Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E (1988) Cloud-radiative forcing and climate: results from the earth radiation budget experiment. Science 243(4887):57–63. doi: 10.1126/science.243.4887.57 CrossRefGoogle Scholar
  34. Reichelstein S, Yorston M (2012) The prospects for cost competitive solar PV power. Energy Policy 55:117–127. doi: 10.1016/j.enpol.2012.11.003 CrossRefGoogle Scholar
  35. Saber EM, Lee SE, Manthapuri S, Yi W, Deb C (2014) PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings. Energy 71:588–595. doi: 10.1016/ CrossRefGoogle Scholar
  36. Shah ASMB, Yokoyama H, Kakimoto N (2015) High-precision forecasting model of solar irradiance based on grid point value data analysis for an efficient photovoltaic system. IEEE Trans Sustain Energy 6(2):474–481. doi: 10.1109/TSTE.2014.2383398 CrossRefGoogle Scholar
  37. Singh R, Banerjee R (2015) Estimation of rooftop solar photovoltaic potential of a city. Sol Energy 115:589–602. doi: 10.1016/j.solener.2015.03.016 CrossRefGoogle Scholar
  38. Su Y, Chan LC, Shu L, Tsui KL (2012) Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems. Appl Energy 93:319–326. doi: 10.1016/j.apenergy.2011.12.052 CrossRefGoogle Scholar
  39. Thakur J, Chakraborty B (2015) A study of feasible smart tariff alternatives for smart grid integrated solar panels in India. Energy 93:963–975. doi: 10.1016/ CrossRefGoogle Scholar
  40. Tina GM, Scorfani S (2008) Electrical and thermal model for PV module temperature evaluation. In: The 14th IEEE Mediterranean Electrotechnical Conference, 2008, Ajaccio, France, pp 585–590. doi: 10.1109/MELCON.2008.4618498
  41. Treehugger (2013) Energy Basics. Accessed 12 Sept 2015
  42. Vasisht MS, Srinivasan J, Ramasesha SK (2016) Performance of solar photovoltaic installations: effect of seasonal variations. Sol Energy 131:39–46. doi: 10.1016/j.solener.2016.02.013 CrossRefGoogle Scholar
  43. Verhelst B, Caes D, Vandevelde L, Desmet J (2013) Prediction of yield of solar modules as a function of technological and climatic parameters. In: IEEE international conference on clean electrical power, Alghero, Sardinia, pp 1–6. doi: 10.1109/ICCEP.2013.6586956
  44. Zhang Y, Yang J, Wang K, Wang Z (2015a) Wind power prediction considering nonlinear atmospheric disturbances. Energies 8(1):475–489. doi: 10.3390/en8010475 CrossRefGoogle Scholar
  45. Zhang Y, Beaudin M, Taheri R, Zareipour H, Wood D (2015b) Day-ahead power output forecasting for small-scale solar photovoltaic electricity generators. IEEE Trans Smart Grid 6(5):2253–2262. doi: 10.1109/TSG.2015.2397003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Divecha Centre for Climate ChangeIndian Institute of ScienceBangaloreIndia

Personalised recommendations