Clean Technologies and Environmental Policy

, Volume 18, Issue 3, pp 901–914 | Cite as

Possibilities of increasing resource efficiency in nitrogen fertilizer production

  • Irina Kliopova
  • Inga Baranauskaitė-Fedorova
  • Milda Malinauskienė
  • Jurgis K. Staniškis
Original Paper


Fertilizer production is one of the most important industries for ensuring a growing demand for food resources. Regrettably, this industry is characterized by high energy intensity. Even today, fossil fuel such as natural gas is the main raw material and the main source of primary energy in nitrogen fertilizer production. According to the data of the Ministry of Energy of the Republic of Lithuania, about 40 % of total natural gas consumption in Lithuania is used in the fertilizer production company. Evaluation of the possibilities to reduce energy intensity and use alternative resources in nitrogen fertilizer production is the main objective of this research. All the technological processes of nitrogen fertilizer production in the analyzed company are objects of research of this work. Recent researches into the area of cleaner chemical product production are reviewed and systematized. The methods of cleaner production (CP), industrial ecology, material flow analysis, environmental impact assessment, and evaluation of environmental efficiency are integrated into the methodology of this work. Results of the initial environmental analysis of nitrogen fertilizer production processes show that the analyzed company has already implemented several CP projects with a view to minimizing energy intensity and air emissions. Despite their efforts, an enormous amount of energy is wasted in the main and additional processes (for example, ammonia production, cooling process, and heat energy production). Several alternatives for resource efficiency and energy saving have been suggested when doing the research. This paper presents the results of the feasibility analysis of three case studies in which pollution prevention methods are applied jointly with industrial symbiosis.


Cleaner ammonia fertilizer production Industrial symbiosis Resource efficiency Biogas production Waste energy 


  1. Ahlgren S, Baky A, Bernesson S et al (2008) Ammonium nitrate fertiliser production based on biomass: environmental effects from a life cycle perspective. Bioresour Technol 99:8034–8041. doi: 10.1016/j.biortech.2008.03.041 CrossRefGoogle Scholar
  2. Ahlgren S, Bernesson S, Nordberg K, Hansson P-A (2010) Nitrogen fertiliser production based on biogas: energy input, environmental impact and land use. Bioresour Technol 101:7192–7195. doi: 10.1016/j.biortech.2010.04.006 CrossRefGoogle Scholar
  3. Appl M (2012) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  4. Barbier J, Oliviero L, Renard B, Duprez D (2002) Catalytic wet air oxidation of ammonia over M/CeO2 catalysts in the treatment of nitrogen-containing pollutants. Catal Today 75:29–34CrossRefGoogle Scholar
  5. Bauer F, Persson T, Hulteberg C, Tamm D (2013) Biogas upgrading: technology overview, comparison and perspectives for the future. Biofuels Bioprod Biorefining 7:499–511. doi: 10.1002/bbb.1423 CrossRefGoogle Scholar
  6. Chaubey R, Sahu S, James OO, Maity S (2013) A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew Sustain Energy Rev 23:443–462CrossRefGoogle Scholar
  7. Cordis project. Industrial Sector: Chemicals (2009) A technological breakthrough in radiant efficiency: major fuel saving on a steam reforming furnace. In: Proj. No 0031/94/NL.
  8. Dawson CJ, Hilton J (2011) Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus. Food Policy 36:S14–S22. doi: 10.1016/j.foodpol.2010.11.012 CrossRefGoogle Scholar
  9. Foglia D, Wukovits W, Friedl A et al (2011) Effects of feedstocks on the process integration of biohydrogen production. Clean Technol Environ Policy 13:547–558. doi: 10.1007/s10098-011-0351-7 CrossRefGoogle Scholar
  10. Gefeniene A, Kauspediene D, Snukiskis J (2006) Performance of sulphonic cation exchangers in the recovery of ammonium from basic and slight acidic solutions. J Hazard Mater 135:180–187. doi: 10.1016/j.jhazmat.2005.11.042 CrossRefGoogle Scholar
  11. Gilbert P, Alexander S, Thornley P, Brammer J (2014) Assessing economically viable carbon reductions for the production of ammonia from biomass gasification. J Clean Prod 64:581–589. doi: 10.1016/j.jclepro.2013.09.011 CrossRefGoogle Scholar
  12. Institute of Environmental Engineering (2010) Soil-concept. Generation of fuel: pelleting press monitoring report. ENERCOM project. P–17Google Scholar
  13. Jorquera O, Kalid R, Kiperstok A et al (2013) Effluent stream treatment in a nitrogenous fertilizer factory: an exergy analysis for process integration. Process Saf Environ Prot 92:862–868. doi: 10.1016/j.psep.2013.07.003 CrossRefGoogle Scholar
  14. Jucevicius R, Jucevicius G, Rybakovas E, Zebrauskiene J (2010) Lietuvos chemijos produktų gamybos pramonės konkurencingumas: mokslo studija. (Compitetiveness of Lithuanian Chemical products manufacturing industry: a scientific study). KaunasGoogle Scholar
  15. Kliopova I, Makarskiene K (2013) Generation of solid recovered fuel from the separate fraction of pre-composted materials (Sewage Sludge and Biomass Residues). Environ Res Eng Manag 2:5–18Google Scholar
  16. Kliopova I, Staniskis JK (2006) The evaluation of cleaner production performance in Lithuanian industries. J Clean Prod 14:1561–1575. doi: 10.1016/j.jclepro.2005.04.017 CrossRefGoogle Scholar
  17. Kliopova I, Knasyte M, Staniskis JK (2011) Lietuvos ūkio aprūpinimo svarbiausiomis žaliavomis esamos ir prognozuojamos ateityje situacijos ir šios situacijos poveikio Lietuvos konkurencingumui analizės studija. Study of current and predicted situation of Lithuanian economy supply with critical Ra. VilniusGoogle Scholar
  18. Kliopova I, Malinauskiene M, Baranauskaite I (2014) Feasibility analysis of resource efficient innovations for cleaner ammonia fertilizer production. Final report of scientific research project. P-160. KaunasGoogle Scholar
  19. Knašyte M, Kliopova I, Staniškis JK (2012) Economic importance, supply and environmental risks of imported resources in Lithuanian industry. Environ Res Eng Manag 2:40–47Google Scholar
  20. Madanhire I, Mugwindiri K, Mbohwa C (2014) Enhancing cleaner production application in fertilizer manufacturing: case study. Clean Technol Environ Policy. doi: 10.1007/s10098-014-0823-7 Google Scholar
  21. Malhotra A, Macris A, Gosnell J (2004) Increase hydrogen production using KBR’s KRES TechnologyGoogle Scholar
  22. McCoy G (2014) Improving energy efficiency through biomass drying. In: Woody biomass CHP Dist. energy work. Seattle, Washington.
  23. NEFCO (The Nordic Environment Finance Corporation) CP (Cleaner Production) Project (2004) Implementation of biogas generation system for alternative electricity and heat energy production, solving organic waste utilization problems at “Lavirda” company, KaunasGoogle Scholar
  24. Panjeshahi MH, Ghasemian Langeroudi E, Tahouni N (2008) Retrofit of ammonia plant for improving energy efficiency. Energy 33:46–64. doi: 10.1016/ CrossRefGoogle Scholar
  25. Paxman D, Trottier S, Nikoo M et al (2014) Initial experimental and theoretical investigation of solar molten media methane cracking for hydrogen production. Energy Procedia 49:2027–2036. doi: 10.1016/j.egypro.2014.03.215 CrossRefGoogle Scholar
  26. Quadery AKMA (2003) Natural gas and the fertilizer industry. Energy Sustain Dev 7:40–48CrossRefGoogle Scholar
  27. Rafiqul I, Weber C, Lehmann B, Voss A (2005) Energy efficiency improvements in ammonia production—perspectives and uncertainties. Energy 30:2487–2504. doi: 10.1016/ CrossRefGoogle Scholar
  28. Ramírez CA, Worrell E (2006) Feeding fossil fuels to the soil: an Analysis of energy embedded and technological learning in the fertilizer industry. Resour Conserv Recycl 46:75–93. doi: 10.1016/j.resconrec.2005.06.004 CrossRefGoogle Scholar
  29. Roper LD (2014) World ammonia production.
  30. Santos DMF, Sequeira CAC, Figueiredo JL (2013) Hydrogen production by alkaline water electrolysis. Química Nova 36(8):1176–1193CrossRefGoogle Scholar
  31. Sica M, Duta A, Teodosiu C, Draghici C (2013) Thermodynamic and kinetic study on ammonium removal from a synthetic water solution using ion exchange resin. Clean Technol Environ Policy 16:351–359. doi: 10.1007/s10098-013-0625-3 CrossRefGoogle Scholar
  32. Singh B (2009) Treatment of spent catalyst from the nitrogenous fertilizer industry: a review of the available methods of regeneration, recovery and disposal. J Hazard Mater 167:24–37. doi: 10.1016/j.jhazmat.2009.01.071 CrossRefGoogle Scholar
  33. Staniskis JK, Stasiskiene Z, Kliopova I, Varzinskas V (2010) Sustainable innovations in Lithuanian industry: development and implementation. Kaunas University of Technology (KTU): publishing house Technologija, KaunasGoogle Scholar
  34. Thek G, Obernberger I (2009) Wood pellet production costs under Austrian framework consultations. 17th European biomass conference & exhibition proceedings. ETA- Renewable Energies, HamburgGoogle Scholar
  35. U.S. Department of Energy (2011) Energy-Intensive processes portfolio: Addressing key energy challengers across U.S. Industry. Industrial technologies program.
  36. Wen J, Liu X, Yuan Q, Zhao X (2006) A pilot study for nitrifying treatment of wastewater from fertilizer production using a gas: liquid: solid three-phase flow airlift loop bioreactor. Chem Technol Biotechnol 81:817–822. doi: 10.1002/jctb CrossRefGoogle Scholar
  37. Worrell E, Blok K (1994) Energy savings in the nitrogen fertilizer industry in the Netherlands. Energy 19:195–209CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Kaunas University of Technology, Institute of Environmental EngineeringKaunasLithuania

Personalised recommendations