Clean Technologies and Environmental Policy

, Volume 18, Issue 3, pp 717–727 | Cite as

Investigating the performance of ammonium sulphate draw solution in fertilizer drawn forward osmosis process

  • Peter NasrEmail author
  • Hani Sewilam
Original Paper


This work investigated the performance of ammonium sulphate as a draw solution in a fertilizer drawn forward osmosis (FDFO) desalination process using thin-film composite (TFC) membrane. Performance has been assessed by the water flux, reverse permeation and the forward rejection of the feed solutes. A logarithmic relation has been determined between flux and ammonium sulphate concentration. As water flux increased, the specific reverse solute flux (SRSF) of NH4 + and SO4 2− ions dropped, which is a favourable condition. Reverse permeation values obtained at flux less than 10 L/m2/h are significantly higher than that for flux more than 10 L/m2/h. Thus, it is recommended to operate the process at a flux higher than 10 L/m2/h to avoid loss of draw solute by reverse permeation. SRSF was almost constant irrespective of ammonium sulphate concentration. TFC membrane used in this study exhibited high rejection of feed solution ions for almost all draw solution concentrations except when operated at low ammonium sulphate concentration and high feed solution concentration. In conclusion, ammonium sulphate is an efficient draw solution for FDFO process when run at water flux more than 10 L/m2/h exhibiting high osmotic pressure, low reverse solute permeation and high rejection of feed solute.


Ammonium sulphate Draw solution Fertigation Fertilizer drawn forward osmosis Forward osmosis Reverse solute flux 



The authors gratefully acknowledge the guidance of the Center of Technology in Water and Wastewater and School of Civil and Environmental Engineering, University of Technology, Sydney, Australia, for providing the facility as well as technical support needed for conducting the experiments. Gratitude is further extended to the Center of Sustainable Development at the American University in Cairo for providing the financial support.


  1. Achilli A, Cath TY, Childress AE (2010) Selection of inorganic-based draw solutions for forward osmosis applications. J Membr Sci 364(1–2):233–241. doi: 10.1016/j.memsci.2010.08.010 CrossRefGoogle Scholar
  2. Alsvik I, Hägg M-B (2013) Pressure retarded osmosis and forward osmosis membranes: materials and methods. Polymers 5(1):303–327. doi: 10.3390/polym5010303 CrossRefGoogle Scholar
  3. Cath T, Childress A, Elimelech M (2006) Forward osmosis: principles, applications, and recent developments. J Membr Sci 281(1–2):70–87. doi: 10.1016/j.memsci.2006.05.048 CrossRefGoogle Scholar
  4. Chung T-S, Zhang S, Wang KY, Su J, Ling MM (2012) Forward osmosis processes: yesterday, today and tomorrow. Desalination 287:78–81. doi: 10.1016/j.desal.2010.12.019 CrossRefGoogle Scholar
  5. Coday B, Xu P, Beaudry E, Herron J, Lampi K, Hancock NT, Cath TY (2014) The sweet spot of forward osmosis: treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalination 333(1):23–35. doi: 10.1016/j.desal.2013.11.014 CrossRefGoogle Scholar
  6. Gray GT, McCutcheon JR, Elimelech M (2006) Internal concentration polarization in forward osmosis: role of membrane orientation. Desalination 197(1–3):1–8. doi: 10.1016/j.desal.2006.02.003 CrossRefGoogle Scholar
  7. Hancock NT, Cath TY (2009) Solute coupled diffusion in osmotically driven membrane processes. Environ Sci Technol 43(17):6769–6775CrossRefGoogle Scholar
  8. Kafkafi U, Tarchitzky J (2011) Fertigation: a tool for efficient fertilizer and water management, 1st edn. International Fertilizer Industry Association and International Potash Institute, ParisGoogle Scholar
  9. Kim JE (2013) A pilot-scale fertilizer drawn forward osmosis and nanofiltration hybrid system for desalination (Masters Thesis). University of Technology, Sydney (UTS), New South Wales.
  10. Kim JE, Phuntsho S, Lotfi F, Shon HK (2015) Investigation of pilot-scale 8040 FO membrane module under different operating conditions for brackish water desalination. Desalination Water Treat 53(10):2782–2791CrossRefGoogle Scholar
  11. Lay WCL, Chong TH, Tang CY, Fane AG, Zhang J, Liu Y (2010) Fouling propensity of forward osmosis: investigation of the slower flux decline phenomenon. Water Sci Technol 61(4):927. doi: 10.2166/wst.2010.835 CrossRefGoogle Scholar
  12. Lee S, Boo C, Elimelech M, Hong S (2010) Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). J Membr Sci 365(1–2):34–39. doi: 10.1016/j.memsci.2010.08.036 CrossRefGoogle Scholar
  13. Majeed T, Phuntsho S, Tijing L, Shon HK (2015) Fertilizer-drawn forward osmosis for irrigation of tomatoes. Desalination Water Treat 53(10):2746–2759CrossRefGoogle Scholar
  14. McCutcheon JR, McGinnis RL, Elimelech M (2005) A novel ammonia—carbon dioxide forward (direct) osmosis desalination process. Desalination 174(1):1–11. doi: 10.1016/j.desal.2004.11.002 CrossRefGoogle Scholar
  15. McCutcheon JR, McGinnis RL, Elimelech M (2006) Desalination by ammonia–carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance. J Membr Sci 278(1–2):114–123. doi: 10.1016/j.memsci.2005.10.048 CrossRefGoogle Scholar
  16. Nasr P, Sewilam H (2015a) Forward osmosis: an alternative sustainable technology and potential applications in water industry. Clean Technol Environ Policy. doi: 10.1007/s10098-015-0927-8 Google Scholar
  17. Nasr P, Sewilam H (2015b) The potential of groundwater desalination using forward osmosis for irrigation in Egypt. Clean Technol Environ Policy. doi: 10.1007/s10098-015-0902-4 Google Scholar
  18. OLI Systems Inc. (2015) OLI Studio: stream analyzer. Cedar Knolls, NJGoogle Scholar
  19. Phillip WA, Yong JS, Elimelech M (2010) Reverse draw solute permeation in forward osmosis: modeling and experiments. Environ Sci Technol 44(13):5170–5176. doi: 10.1021/es100901n CrossRefGoogle Scholar
  20. Phuntsho S (2012) A novel fertiliser drawn forward osmosis desalination for fertigation (Doctoral of Philosophy Thesis). University of Technology, Sydney (UTS), New South Wales.
  21. Phuntsho S, Shon HK, Hong S, Lee S, Vigneswaran S, Kandasamy J (2011) Fertiliser drawn forward osmosis desalination: the concept, performance and limitations for fertigation. Rev Environ Sci Bio/Technol. doi: 10.1007/s11157-011-9259-2 Google Scholar
  22. Phuntsho S, Hong S, Elimelech M, Shon HK (2014) Osmotic equilibrium in the forward osmosis process: modelling, experiments and implications for process performance. J Membr Sci 453:240–252. doi: 10.1016/j.memsci.2013.11.009 CrossRefGoogle Scholar
  23. Seppälä A, Lampinen MJ (2004) On the non-linearity of osmotic flow. Exp Therm Fluid Sci 28(4):283–296CrossRefGoogle Scholar
  24. Shaffer DL, Werber JR, Jaramillo H, Lin S, Elimelech M (2015) Forward osmosis: Where are we now? Desalination 356:271–284. doi: 10.1016/j.desal.2014.10.031 CrossRefGoogle Scholar
  25. Su J, Zhang S, Ling MM, Chung T-S (2012) Forward osmosis: an emerging technology for sustainable supply of clean water. Clean Technol Environ Policy 14(4):507–511. doi: 10.1007/s10098-012-0486-1 CrossRefGoogle Scholar
  26. Tan CH, Ng HY (2008) Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations. J Membr Sci 324(1–2):209–219. doi: 10.1016/j.memsci.2008.07.020 CrossRefGoogle Scholar
  27. Tiraferri A, Yip NY, Straub AP, Castrillon SRV, Elimelech M (2013) A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes. J Membr Sci 444:523–538. doi: 10.1016/j.memsci.2013.05.023 CrossRefGoogle Scholar
  28. Wang R, Shi L, Tang CY, Chou S, Qiu C, Fane AG (2010) Characterization of novel forward osmosis hollow fiber membranes. J Membr Sci 355(1–2):158–167. doi: 10.1016/j.memsci.2010.03.017 CrossRefGoogle Scholar
  29. Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Elimelech M (2010) High performance thin-film composite forward osmosis membrane. Environ Sci Technol 44(10):3812–3818. doi: 10.1021/es1002555 CrossRefGoogle Scholar
  30. Yong JS (2012) Reverse draw solute transport in forward osmosis systems. Yale University.
  31. Zhao S, Zou L (2011) Relating solution physicochemical properties to internal concentration polarization in forward osmosis. J Membr Sci 379(1–2):459–467. doi: 10.1016/j.memsci.2011.06.021 CrossRefGoogle Scholar
  32. Zhao S, Zou L, Mulcahy D (2012a) Brackish water desalination by a hybrid forward osmosis–nanofiltration system using divalent draw solute. Desalination 284:175–181. doi: 10.1016/j.desal.2011.08.053 CrossRefGoogle Scholar
  33. Zhao S, Zou L, Tang CY, Mulcahy D (2012b) Recent developments in forward osmosis: Opportunities and challenges. J Membr Sci 396:1–21. doi: 10.1016/j.memsci.2011.12.023 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Environmental Engineering Program, Department of Construction and Architectural EngineeringThe American University in CairoCairoEgypt
  2. 2.Center of Sustainable DevelopmentThe American University in CairoCairoEgypt

Personalised recommendations