Clean Technologies and Environmental Policy

, Volume 17, Issue 7, pp 2079–2090 | Cite as

Forward osmosis: an alternative sustainable technology and potential applications in water industry

  • Peter NasrEmail author
  • Hani Sewilam
Brief Report


This paper presents an advancing sustainable membrane-based separation process, which is forward osmosis (FO). The review begins with an introduction of the basic principles of the FO process. Then, a comparison to the most currently well-known desalination technology (RO) is presented. Following section summarizes potential applications of FO in the water desalination field, producing either potable water or irrigation water from brackish/saline feeds. Next, two major FO applications in the domain of water reuse are discussed: wastewater and industrial applications. Wastewater applications are such as OSMBR and landfill leachate treatment; and Industrial applications include oil and gas, pharmaceutical, and food and beverage industries. These different FO applications are briefly reviewed and assessed. Although FO has attracted growing attention in many potential applications, it still experiences several considerable limitations, including concentration polarization, membrane fouling, reverse solute diffusion, and need for membrane and draw solution development.


Desalination Forward osmosis Reverse osmosis Wastewater treatment Water industry Sustainability 



The authors acknowledge the financial support of Mr. Yousef Jameel for PhD fellowship award in Environmental Engineering program. Gratitude is further extended to the Center of Sustainable Development members for their constant guidance and encouragement.


  1. Achilli A, Cath TY, Marchand EA, Childress AE (2009) The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination 239(1–3):10–21. doi: 10.1016/j.desal.2008.02.022 CrossRefGoogle Scholar
  2. Achilli A, Cath TY, Childress AE (2010) Selection of inorganic-based draw solutions for forward osmosis applications. J Membr Sci 364(1–2):233–241. doi: 10.1016/j.memsci.2010.08.010 CrossRefGoogle Scholar
  3. Altaee A, Zaragoza G, van Tonningen HR (2014) Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination. Desalination 336:50–57. doi: 10.1016/j.desal.2014.01.002 CrossRefGoogle Scholar
  4. Amarasinghe UA, Smakhtin V (2014) Global water demand projections: past, present and future. International Water Management Institute (IWMI). Accessed from
  5. Cath T, Childress A, Elimelech M (2006) Forward osmosis: Principles, applications, and recent developments. J Membr Sci 281(1–2):70–87. doi: 10.1016/j.memsci.2006.05.048 CrossRefGoogle Scholar
  6. Cath TY, Hancock NT, Lundin CD, Hoppe-Jones C, Drewes JE (2010) A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water. J Membr Sci 362(1–2):417–426. doi: 10.1016/j.memsci.2010.06.056 CrossRefGoogle Scholar
  7. Chung T-S, Zhang S, Wang KY, Su J, Ling MM (2012) Forward osmosis processes: yesterday, today and tomorrow. Desalination 287:78–81. doi: 10.1016/j.desal.2010.12.019 CrossRefGoogle Scholar
  8. Coday B, Cath T (2014) Forward osmosis: novel desalination of produced water and fracturing flowback. J—Am Water Works Assoc 106:E55–E66. doi: 10.5942/jawwa.2014.106.0016 CrossRefGoogle Scholar
  9. Coday B, Holloway R, Herron J, Schutter M, LAmpi K, Cath T (2014) Progress in the investigation of complex FO applications: UFO-MBR and reclamation of O&G wastewater. Presented at the International Forward Osmosis Association World Summit 2014, IFOA, PortugalGoogle Scholar
  10. Coday B, Xu P, Beaudry E, Herron J, Lampi K, Hancock NT, Cath TY (2014b) The sweet spot of forward osmosis: treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalination 333(1):23–35. doi: 10.1016/j.desal.2013.11.014 CrossRefGoogle Scholar
  11. Cui Y, Ge Q, Liu X-Y, Chung T-S (2014) Novel forward osmosis process to effectively remove heavy metal ions. J Membr Sci 467:188–194. doi: 10.1016/j.memsci.2014.05.034 CrossRefGoogle Scholar
  12. Duranceau SJ (2012) Emergence of forward osmosis and pressure-retarded osmotic processes for drinking water treatment. Florida Water Resour J. Accessed from
  13. FAO (2005) Fertilizer use by crop in Egypt. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  14. Ge Q, Ling M, Chung T-S (2013) Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future. J Membr Sci 442:225–237. doi: 10.1016/j.memsci.2013.03.046 CrossRefGoogle Scholar
  15. Ge Q, Fu F, Chung T-S (2014) Ferric and cobaltous hydroacid complexes for forward osmosis (FO) processes. Water Res 58:230–238. doi: 10.1016/j.watres.2014.03.024 CrossRefGoogle Scholar
  16. Gray GT, McCutcheon JR, Elimelech M (2006) Internal concentration polarization in forward osmosis: role of membrane orientation. Desalination 197(1–3):1–8. doi: 10.1016/j.desal.2006.02.003 CrossRefGoogle Scholar
  17. Jin X (n.d.) Food & Health Innovation Service—Technology Alert, University of Glasgow, UK.
  18. Kafkafi U, Tarchitzky J (2011) Fertigation: a tool for efficient fertilizer and water management, 1st edn. International Fertilizer Industry Association and International Potash Institute, ParisGoogle Scholar
  19. Lampi K (2014) Thinking out of the box—innovations of forward osmosis. Presented at the International Forward Osmosis Association World Summit 2014, IFOA, PortugalGoogle Scholar
  20. Lampi K, Shethji J (2014) Forward osmosis industial wastewater treatment: landfill leachate and oil and gas porduced waters. Presented at the International Forward Osmosis Association World Summit 2014, IFOA, PortugalGoogle Scholar
  21. Lay WCL, Chong TH, Tang CY, Fane AG, Zhang J, Liu Y (2010) Fouling propensity of forward osmosis: investigation of the slower flux decline phenomenon. Water Sci Technol 61(4):927. doi: 10.2166/wst.2010.835 CrossRefGoogle Scholar
  22. Lay WCL, Zhang J, Tang C, Wang R, Liu Y, Fane AG (2012) Factors affecting flux performance of forward osmosis systems. J Membr Sci 394–395:151–168. doi: 10.1016/j.memsci.2011.12.035 CrossRefGoogle Scholar
  23. Lee S, Boo C, Elimelech M, Hong S (2010) Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). J Membr Sci 365(1–2):34–39. doi: 10.1016/j.memsci.2010.08.036 CrossRefGoogle Scholar
  24. Lutchmiah K, Verliefde ARD, Roest K, Rietveld LC, Cornelissen ER (2014) Forward osmosis for application in wastewater treatment: a review. Water Res 58:179–197. doi: 10.1016/j.watres.2014.03.045 CrossRefGoogle Scholar
  25. McCutcheon JR, McGinnis RL, Elimelech M (2005) A novel ammonia—carbon dioxide forward (direct) osmosis desalination process. Desalination 174(1):1–11. doi: 10.1016/j.desal.2004.11.002 CrossRefGoogle Scholar
  26. McCutcheon JR, McGinnis RL, Elimelech M (2006) Desalination by ammonia–carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance. J Membr Sci 278(1–2):114–123. doi: 10.1016/j.memsci.2005.10.048 CrossRefGoogle Scholar
  27. McGinnis RL, Elimelech M (2007a) Energy requirements of ammonia–carbon dioxide forward osmosis desalination. Desalination 207(1–3):370–382. doi: 10.1016/j.desal.2006.08.012 CrossRefGoogle Scholar
  28. McGinnis RL, Elimelech M (2007b) Energy requirements of ammonia–carbon dioxide forward osmosis desalination. Desalination 207(1–3):370–382. doi: 10.1016/j.desal.2006.08.012 CrossRefGoogle Scholar
  29. McGinnis RL, Elimelech M (2008) Global challenges in energy and water supply: the promise of engineered osmosis. Environ Sci Technol 42(23):8625–8629. doi: 10.1021/es800812m CrossRefGoogle Scholar
  30. McGovern RK, Lienhard VJH (2014) On the potential of forward osmosis to energetically outperform reverse osmosis desalination. J Membr Sci 469:245–250. doi: 10.1016/j.memsci.2014.05.061 CrossRefGoogle Scholar
  31. Mizuno H, Kansha Y, Kishimoto A, Tsutsumi A (2013) Thermal seawater desalination based on self-heat recuperation. Clean Technol Environ Policy 15(5):765–769. doi: 10.1007/s10098-012-0539-5 CrossRefGoogle Scholar
  32. Moore BJ, Nicoll PG, Beford MR, Harvey WT (2014) An evaluation of forward osmosis based desalination. Presented at the International Forward Osmosis Association World Summit 2014, IFOA, PortugalGoogle Scholar
  33. Nasr P, Sewilam H (2015) The potential of groundwater desalination using forward osmosis for irrigation in Egypt. Clean Technol Environ Policy. doi: 10.1007/s10098-015-0902-4 Google Scholar
  34. Petrotos KB, Lazarides HN (2001) Osmotic concentration of liquid foods. J Food Eng 49(2):201–206CrossRefGoogle Scholar
  35. Phillip WA, Yong JS, Elimelech M (2010) Reverse draw solute permeation in forward osmosis: modeling and experiments. Environ Sci Technol 44(13):5170–5176. doi: 10.1021/es100901n CrossRefGoogle Scholar
  36. Phuntsho S (2012) A novel fertiliser drawn forward osmosis desalination for fertigation (Doctoral of Philosophy Thesis). University of Technology, Sydney (UTS), New South Wales, Australia. Accessed from
  37. Phuntsho S, Shon HK, Hong S, Lee S, Vigneswaran S (2011a) A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: evaluating the performance of fertilizer draw solutions. J Membr Sci 375(1–2):172–181. doi: 10.1016/j.memsci.2011.03.038 CrossRefGoogle Scholar
  38. Phuntsho S, Shon HK, Hong S, Lee S, Vigneswaran S, Kandasamy J (2011b) Fertiliser drawn forward osmosis desalination: the concept, performance and limitations for fertigation. Rev Environ Sci Bio/Technol. doi: 10.1007/s11157-011-9259-2 Google Scholar
  39. Phuntsho S, Shon HK, Majeed T, El Saliby I, Vigneswaran S, Kandasamy J, Lee S (2012) Blended fertilizers as draw solutions for fertilizer-drawn forward osmosis desalination. Environ Sci Technol 46(8):4567–4575. doi: 10.1021/es300002w CrossRefGoogle Scholar
  40. Qiu C, Setiawan L, Wang R, Tang CY, Fane AG (2012) High performance flat sheet forward osmosis membrane with an NF-like selective layer on a woven fabric embedded substrate. Desalination 287:266–270. doi: 10.1016/j.desal.2011.06.047 CrossRefGoogle Scholar
  41. Setiawan L, Wang R, Li K, Fane AG (2011) Fabrication of novel poly(amide–imide) forward osmosis hollow fiber membranes with a positively charged nanofiltration-like selective layer. J Membr Sci 369(1–2):196–205. doi: 10.1016/j.memsci.2010.11.067 CrossRefGoogle Scholar
  42. Siew A (2013) Controlling drug release through osmotic systems. Pharm Technol 37(7):40–44Google Scholar
  43. Su J, Zhang S, Ling MM, Chung T-S (2012) Forward osmosis: an emerging technology for sustainable supply of clean water. Clean Technol Environ Policy 14(4):507–511. doi: 10.1007/s10098-012-0486-1 CrossRefGoogle Scholar
  44. Tan CH, Ng HY (2010) A novel hybrid forward osmosis nanofiltration process for seawater desalination: draw solution selection and system configuration.pdf. Desalin Water Treat 13(1–3):356–361. doi: 10.5004/dwt.2010.1733 CrossRefGoogle Scholar
  45. Thompson NA, Nicoll PG (2011) Forward osmosis desalination: a commercial reality. Presented at the Perth Convention and Exhibition Centre (PCEC, Perth, Australia), IDA World CongressGoogle Scholar
  46. UNESCO (2012) Managing water under uncertainty and risk (The United Nations World Water Development Report 4 No. 1), UNESCO, ParisGoogle Scholar
  47. US EPA (2012) Water-Energy Connection| Region 9: |. Accessed 4 April 2014
  48. Valladares Linares R, Li Z, Sarp S, Bucs SS, Amy G, Vrouwenvelder JS (2014) Forward osmosis niches in seawater desalination and wastewater reuse. Water Res 66:122–139. doi: 10.1016/j.watres.2014.08.021 CrossRefGoogle Scholar
  49. Wang R, Shi L, Tang CY, Chou S, Qiu C, Fane AG (2010) Characterization of novel forward osmosis hollow fiber membranes. J Membr Sci 355(1–2):158–167. doi: 10.1016/j.memsci.2010.03.017 CrossRefGoogle Scholar
  50. Yangali-Quintanilla V, Li Z, Valladares R, Li Q, Amy G (2011) Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse. Desalination 280(1–3):160–166. doi: 10.1016/j.desal.2011.06.066 CrossRefGoogle Scholar
  51. Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Elimelech M (2010) High performance thin-film composite forward osmosis membrane. Environ Sci Technol 44(10):3812–3818. doi: 10.1021/es1002555 CrossRefGoogle Scholar
  52. Zhao S, Zou L (2011) Relating solution physicochemical properties to internal concentration polarization in forward osmosis. J Membr Sci 379(1–2):459–467. doi: 10.1016/j.memsci.2011.06.021 CrossRefGoogle Scholar
  53. Zhao S, Zou L, Mulcahy D (2012a) Brackish water desalination by a hybrid forward osmosis–nanofiltration system using divalent draw solute. Desalination 284:175–181. doi: 10.1016/j.desal.2011.08.053 CrossRefGoogle Scholar
  54. Zhao S, Zou L, Tang CY, Mulcahy D (2012b) Recent developments in forward osmosis: opportunities and challenges. J Membr Sci 396:1–21. doi: 10.1016/j.memsci.2011.12.023 CrossRefGoogle Scholar
  55. Zhong P, Fu X, Chung T-S, Weber M, Maletzko C (2013) Development of thin-film composite forward osmosis hollow fiber membranes using direct sulfonated polyphenylenesulfone (sPPSU) as membrane substrates. Environ Sci Technol. doi: 10.1021/es4013273 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Environmental Engineering Program, Department of Construction and Architectural EngineeringAmerican University in CairoCairoEgypt
  2. 2.American University in CairoCairoEgypt

Personalised recommendations