Advertisement

Clean Technologies and Environmental Policy

, Volume 17, Issue 7, pp 1883–1895 | Cite as

The potential of groundwater desalination using forward osmosis for irrigation in Egypt

  • Peter NasrEmail author
  • Hani Sewilam
Original Paper

Abstract

As irrigation in Egypt by far is the most significant water user, fertilizer-drawn forward osmosis (FDFO) is a valid option to increase the availability of freshwater from brackish water. Although most of Egypt’s area has access to brackish groundwater, groundwater in Egypt is not well exploited due to its salinity. FDFO holds high potential as it can make irrigation water available at lower energy than the currently available technologies, and is less vulnerable to operational issues such as membrane fouling, optimizes fertilizers application, and saves on labor cost. The objective of this paper is to explore the potential application of FDFO desalination for brackish groundwater in Egypt. For sustainability reasons, five selection criteria were outlined and two locations have been suggested for potential application. The study demonstrated that the proposed scheme is suitable for the two selected areas.

Keywords

Desalination Fertigation Fertilizer-drawn forward osmosis Forward osmosis Groundwater Irrigation 

Notes

Acknowledgments

The authors acknowledge the financial support of Mr. Yousef Jameel for PhD fellowship award in Environmental Engineering program. Gratitude is further extended to the Center of Sustainable Development members for their constant guidance and encouragement.

References

  1. Abo Soliman MS, Halim MK (2012) Status and new developments on the use of brackish water for agricultural production in the near East-Egypt country report. United nations food and agriculture organization - Regional office for the near east (RNE), CairoGoogle Scholar
  2. Allam MN, Allam GI (2007) Water resources in Egypt: future challenges and opportunities. Water Int 32(2):205–218. doi: 10.1080/02508060708692201 CrossRefGoogle Scholar
  3. Beltrán JM, Koo-Oshima S (2004) Water desalination for agricultural applications. FAO, RomeGoogle Scholar
  4. Buros OK (1990) The ABCs of desalting, 2nd edn. International Desalination Association, TopsfieldGoogle Scholar
  5. Byrnes A (2007) Geography and geology of Eastern Desert. http://archaeology-easterndesert.com/html/geography.html. Retrieved 7 April 2014
  6. CAPMAS (2013) Statistical yearbook: population. Central Agency for Public Mobilization and Statistics, CairoGoogle Scholar
  7. Cath T, Childress A, Elimelech M (2006) Forward osmosis: principles, applications, and recent developments. J Membr Sci 281(1–2):70–87. doi: 10.1016/j.memsci.2006.05.048 CrossRefGoogle Scholar
  8. Cui Y, Ge Q, Liu X-Y, Chung T-S (2014) Novel forward osmosis process to effectively remove heavy metal ions. J Membr Sci 467:188–194. doi: 10.1016/j.memsci.2014.05.034 CrossRefGoogle Scholar
  9. Dakkak A (2013) Water scarcity in Egypt | EcoMENA. http://www.ecomena.org/tag/water-scarcity-in-egypt/. Retrieved 17 March 2014
  10. Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology, 2nd edn. Wiley, New YorkGoogle Scholar
  11. El Tahlawi MR, Farrag AA, Ahmed SS (2007) Groundwater of Egypt: “an environmental overview”. Environ Geol 55(3):639–652. doi: 10.1007/s00254-007-1014-1 CrossRefGoogle Scholar
  12. Elimelech M (2007) Yale constructs forward osmosis desalination pilot plant. Membr Technol 2007(1):7–8CrossRefGoogle Scholar
  13. El-Sadek A (2010) Water desalination: an imperative measure for water security in Egypt. Desalination 250(3):876–884. doi: 10.1016/j.desal.2009.09.143 CrossRefGoogle Scholar
  14. ESCWA (2009) Role of desalination in addressing water scarcity, vol 3. United Nations Economic and Social Commission for Western Asia, New YorkGoogle Scholar
  15. FAO (2005) Irrigation in Africa in figures: AQUATAST survey 2005 (FAO Water Reports), RomeGoogle Scholar
  16. Hafez A, El-Manharawy S (2003) Economics of seawater RO desalination in the Red Sea region, Egypt. Part 1. A case study. Desalination 153(1):335–347CrossRefGoogle Scholar
  17. Hefny K, Farid MS, Hussein M (1992) Groundwater assessment in Egypt. Int J Water Resour Dev 8(2):126–134CrossRefGoogle Scholar
  18. ICARDA (2011) Water and agriculture in Egypt. International Center for Agricultural Research in the Dry Areas, AleppoGoogle Scholar
  19. Kafkafi U, Tarchitzky J (2011) Fertigation: a tool for efficient fertilizer and water management, 1st edn. International Fertilizer Industry Association and International Potash Institute, ParisGoogle Scholar
  20. Kim JE (2013) A Pilot-scale fertilizer drawn forward osmosis and nanofiltration hybrid system for desalination (Masters thesis). University of Technology, Sydney (UTS), New South Wales, Australia. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/19443994.2013.780804
  21. Lay WCL, Chong TH, Tang CY, Fane AG, Zhang J, Liu Y (2010) Fouling propensity of forward osmosis: investigation of the slower flux decline phenomenon. Water Sci Technol 61(4):927. doi: 10.2166/wst.2010.835 CrossRefGoogle Scholar
  22. Lay WCL, Zhang J, Tang C, Wang R, Liu Y, Fane AG (2012) Factors affecting flux performance of forward osmosis systems. J Membr Sci 394–395:151–168. doi: 10.1016/j.memsci.2011.12.035 CrossRefGoogle Scholar
  23. Lee S, Boo C, Elimelech M, Hong S (2010) Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). J Membr Sci 365(1–2):34–39. doi: 10.1016/j.memsci.2010.08.036 CrossRefGoogle Scholar
  24. Lenntech (2014). Reverse Osmosis Desalination: Brine disposal. http://www.lenntech.com/processes/desalination/brine/general/brine-disposal.htm. Retrieved 11 April 2014
  25. Mabrouk MB, Jonoski A, Solomatine D, Uhlenbrook S (2013) A review of seawater intrusion in the Nile Delta groundwater system—the basis for assessing impacts due to climate changes and water resources development. Hydrol Earth Syst Sci Dis 10(8):10873–10911. doi: 10.5194/hessd-10-10873-2013 CrossRefGoogle Scholar
  26. McCutcheon JR, McGinnis RL, Elimelech M (2005) A novel ammonia–carbon dioxide forward (direct) osmosis desalination process. Desalination 174(1):1–11. doi: 10.1016/j.desal.2004.11.002 CrossRefGoogle Scholar
  27. McGinnis RL, Elimelech M (2007) Energy requirements of ammonia–carbon dioxide forward osmosis desalination. Desalination 207(1–3):370–382. doi: 10.1016/j.desal.2006.08.012 CrossRefGoogle Scholar
  28. McGinnis RL, Elimelech M (2008) Global challenges in energy and water supply: the promise of engineered osmosis. Environ Sci Technol 42(23):8625–8629. doi: 10.1021/es800812m CrossRefGoogle Scholar
  29. Mizuno H, Kansha Y, Kishimoto A, Tsutsumi A (2013) Thermal seawater desalination based on self-heat recuperation. Clean Technol Environ Policy 15(5):765–769. doi: 10.1007/s10098-012-0539-5 CrossRefGoogle Scholar
  30. MWRI (2009) Towards a strategy for development and management of water resources in Egypt, 2009–2017. Ministry of Water Resources and Irrigation, CairoGoogle Scholar
  31. Nashed A, Sproul AB, Leslie G (2014) Water resources and the potential of brackish groundwater extraction in Egypt: a review. J Water Supply. doi: 10.2166/aqua.2014.162 Google Scholar
  32. Phillip WA, Yong JS, Elimelech M (2010) Reverse draw solute permeation in forward osmosis: modeling and experiments. Environ Sci Technol 44(13):5170–5176. doi: 10.1021/es100901n CrossRefGoogle Scholar
  33. Phuntsho S (2012) A novel fertiliser drawn forward osmosis desalination for fertigation (Doctoral of Philosophy Thesis). University of Technology, Sydney (UTS), New South Wales, Australia. Retrieved from http://epress.lib.uts.edu.au/research/handle/10453/21808
  34. Phuntsho S, Shon HK, Hong S, Lee S, Vigneswaran S, Kandasamy J (2011) Fertiliser drawn forward osmosis desalination: the concept, performance and limitations for fertigation. Rev Environ Sci Bio/Technol. doi: 10.1007/s11157-011-9259-2 Google Scholar
  35. Phuntsho S, Hong S, Elimelech M, Shon HK (2014) Osmotic equilibrium in the forward osmosis process: modelling, experiments and implications for process performance. J Membr Sci 453:240–252. doi: 10.1016/j.memsci.2013.11.009 CrossRefGoogle Scholar
  36. Qiu C, Setiawan L, Wang R, Tang CY, Fane AG (2012) High performance flat sheet forward osmosis membrane with an NF-like selective layer on a woven fabric embedded substrate. Desalination 287:266–270. doi: 10.1016/j.desal.2011.06.047 CrossRefGoogle Scholar
  37. Rayan MA, Djebedjian B, Khaled I (2004). Evaluation of the effectiveness and performance of desalination equipment in Egypt. In Eighth International Water Technology Conference, Alexandria, Egypt. Retrieved from http://www.water-observatory.net/sources/iwtc2004/10-2.PDF
  38. RIGW (2002) Environmental management of groundwater resources in Egypt (Final Report). Research Institute for Groundwater, CairoGoogle Scholar
  39. Salim MG (2012) Selection of groundwater sites in Egypt, using geographic information systems, for desalination by solar energy in order to reduce greenhouse gases. J Adv Res 3(1):11–19. doi: 10.1016/j.jare.2011.02.008 CrossRefGoogle Scholar
  40. Sefelnasr A, Sherif M (2014) Impacts of seawater rise on seawater intrusion in the Nile Delta aquifer, Egypt. Groundwater 52(2):264–276. doi: 10.1111/gwat.12058 CrossRefGoogle Scholar
  41. Sharaky AM, Atta SA, El Hassanein AS, Khallaf MA (2007). Hydrogeochemistry of groundwater in Western Nile delta aquifers, Egypt. Presented at the 2nd International Conference on the Geology of Tethys, Cairo University, EgyptGoogle Scholar
  42. Su J, Zhang S, Ling MM, Chung T-S (2012) Forward osmosis: an emerging technology for sustainable supply of clean water. Clean Technol Environ Policy 14(4):507–511. doi: 10.1007/s10098-012-0486-1 CrossRefGoogle Scholar
  43. Tan CH, Ng HY (2010) A novel hybrid forward osmosis nanofiltration process for seawater desalination: draw solution selection and system configuration. Desalination and Water Treatment 13(1–3):356–361. doi: 10.5004/dwt.2010.1733 CrossRefGoogle Scholar
  44. UNESCO (2012a) Knowledge bank (The United Nations World Water Development Report 4 No. 2). UNESCO, ParisGoogle Scholar
  45. UNESCO (2012b) Managing water under uncertainty and risk (The United Nations World Water Development Report 4 No. 1). UNESCO, ParisGoogle Scholar
  46. US EPA (2012). Water-energy connection| Region 9: | http://www.epa.gov/region9/waterinfrastructure/waterenergy.html. Retrieved 4 April 2014
  47. Wang R, Shi L, Tang CY, Chou S, Qiu C, Fane AG (2010) Characterization of novel forward osmosis hollow fiber membranes. J Membr Sci 355(1–2):158–167. doi: 10.1016/j.memsci.2010.03.017 CrossRefGoogle Scholar
  48. Wetterau G (2011) Desalination of seawater (M60), 1st edn. American Water Works Association, DenverGoogle Scholar
  49. Thompson NA, Nicoll PG (2011) Forward osmosis desalination: a commercial reality. Presented at the Perth Convention and Exhibition Centre (PCEC), Perth, Australia, IDA World CongressGoogle Scholar
  50. Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Elimelech M (2010) High performance thin-film composite forward osmosis membrane. Environ Sci Technol 44(10):3812–3818. doi: 10.1021/es1002555 CrossRefGoogle Scholar
  51. Yousef R, Sakr M, Shakweer A (2007) Desalination technology roadmap 2030. Information and Decision Support Center–Center for future studies, CairoGoogle Scholar
  52. Zhao S, Zou L, Tang CY, Mulcahy D (2012) Recent developments in forward osmosis: opportunities and challenges. J Membr Sci 396:1–21. doi: 10.1016/j.memsci.2011.12.023 CrossRefGoogle Scholar
  53. Zhong P, Fu X, Chung T-S, Weber M, Maletzko C (2013) Development of thin-film composite forward osmosis hollow fiber membranes using direct sulfonated polyphenylenesulfone (sppsu) as membrane substrates. Environ Sci Technol. doi: 10.1021/es4013273 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Environmental Engineering Program, Department of Construction and Architectural EngineeringAmerican University in CairoCairoEgypt
  2. 2.American University in CairoCairoEgypt

Personalised recommendations