Clean Technologies and Environmental Policy

, Volume 17, Issue 1, pp 211–223

Pyrolysis of agricultural residues for bio-oil production

Original Paper

Abstract

The production of biofuel from biomass waste is of great interest to the scientific community regarding the discovery of solutions to global energy demand and global warming. The pyrolysis of biomass to produce bio-oil is an easy, cheap and promising technology. In the current investigation, the pyrolysis of two different biomasses (cornelian cherry stones and grape seeds) was achieved at temperatures ranging from 300 to 700 °C. The effect of pyrolysis temperatures on the yields of each product was significant. The bio-oil yields were maximized at 500 °C for cornelian cherry stones and 700 °C for grape seeds. The compositions of bio-oils for both cornelian cherry stones and grape seeds were similar and contained mainly oxygenated hydrocarbons. The compounds observed in this investigation were composed of phenols, alkyl benzenes, alkanes, alkenes, fatty acids, fatty acid esters and a few nitrogen-containing compounds. Bio-char properties were amended in association with both the pyrolysis temperature and biomass type. Bio-chars from cornelian cherry stones contained higher carbon and lower oxygen levels than those from grape seeds under identical conditions. Increases in pyrolysis temperatures produced bio-chars containing higher carbon levels and heating values for both carnelian cherry stones and grape seeds.

Keywords

Pyrolysis Cornelian cherry stone Grape seeds Bio-oil Bio-char 

References

  1. Amen-Chen C, Pakdel H, Roy C (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol 79:277–299. doi:10.1016/S0960-8524(00)00180-2 CrossRefGoogle Scholar
  2. Angin D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593–597. doi:10.1016/j.biortech.2012.10.150 CrossRefGoogle Scholar
  3. Bridgwater AV (2004) Biomass fast pyrolysis. Therm. Sci. 8(2):21–49. doi:10.2298/TSCI0402021B CrossRefGoogle Scholar
  4. Demiral I, Eryazıcı A, Sensoz S (2012) Bio-oil production from pyrolysis of corncob (Zea mays L.). Biomass Bioenerg 36:43–49. doi:10.1016/j.biombioe.2011.10.045 CrossRefGoogle Scholar
  5. Fabbri D, Torri C, Spokas KA (2012) Analytical pyrolysis of synthetic chars derived from biomass with potential agronomic application (biochar). Relationships with impacts on microbial carbon dioxide production. J Anal Appl Pyrol 93:77–84. doi:10.1016/j.jaap.2011.09.012 CrossRefGoogle Scholar
  6. Figueiredo MK-K, Romeiro GA (2009) Low temperature conversion (LTC) of castor seeds—a study of the oil fraction (pyrolysis oil). J Anal Appl Pyrol 86:53–57. doi:10.1016/j.jaap.2009.04.006 CrossRefGoogle Scholar
  7. Grierson S, Strezov V, Shah P (2011) Properties of oil and char derived from slow pyrolysis of Tetraselmis chui. Bioresour Technol 102:8232–8240. doi:10.1016/j.biortech.2011.06.010 CrossRefGoogle Scholar
  8. Houshfar E, Wang L, Vaha- Savo N, Brink A, Lovas T (2014) Characterisation of CO/NO/SO2 emission and ash-forming elements from the combustion and pyrolysis process. Clean Technol Environ Policy. doi:10.1007/s10098-014-0762-3 Google Scholar
  9. Huang Y, Wei Z, Qiu Z, Yin X, Wu C (2012) Study on structure and pyrolysis behavior of lignin derived from corncob acid hydrolysis residue. J Anal Appl Pyrol 93:153–159. doi:10.1016/j.jaap.2011.10.011 CrossRefGoogle Scholar
  10. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. doi:10.1021/cr068360d CrossRefGoogle Scholar
  11. Jin F, Enomoto H (2011) Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/basecatalysed and oxidation reaction. Energy Environ Sci 4:382–397. doi:10.1039/C004268D CrossRefGoogle Scholar
  12. Jourabchi SA, Gan S, Ng HK (2014) Pyrolysis of Jatropha curcas pressed cake for bio-oil production in a fixed-bed system. Energy Convers Manage 78:518–526. doi:10.1016/j.enconman.2013.11.005 CrossRefGoogle Scholar
  13. Kader MA, Islam MR, Parveen M, Haniu H, Takai K (2013) Pyrolysis decomposition of tamarind seed for alternative fuel. Bioresour Technol 149:1–7. doi:10.1016/j.biortech.2013.09.032 CrossRefGoogle Scholar
  14. Lievens C, Yperman J, Cornelissen T, Carleer R (2008) Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: part II: characterisation of the liquid and gaseous fraction as a function of the temperature. Fuel 87:1906–1916. doi:10.1016/j.fuel.2007.10.023 CrossRefGoogle Scholar
  15. Marousek J (2013a) Two-fraction anaerobic fermentation of grass waste. J Sci Food Agric 93:2410–2414. doi:10.1002/jsfa.6046 CrossRefGoogle Scholar
  16. Marousek J (2013b) Removal of hardly fermentable ballast from the maize silage to accelerate biogas production. Ind Crop Prod 44:253–257. doi:10.1016/j.indcrop.2012.11.022 CrossRefGoogle Scholar
  17. Marousek J (2014) Significant breakthrough in biochar cost reduction. Clean Technol Environ Policy. doi:10.1007/s10098-014-0730-y Google Scholar
  18. Marousek J, Haskova S, Zeman R, Vanickova R (2014a) Managerial preferences in relation to financial indicators regarding the mitigation of global change. Sci Eng Ethics. doi:10.1007/s11948-014-9531-2
  19. Marousek J, Zeman R, Vanickova R, Haskova S (2014b) New concept of urban green management. Clean Technol Environ Policy. doi:10.1007/s10098-014-0736-5 Google Scholar
  20. McHenry MP (2009) Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: certainty, uncertainty and risk. Agric Ecosyst Environ 129:1–7. doi:10.1016/j.agee.2008.08.006 CrossRefGoogle Scholar
  21. Nayan NK, Kumar S, Singh RK (2013) Production of the liquid fuel by thermal pyrolysis of neem seed. Fuel 103:437–443. doi:10.1016/j.fuel.2012.08.058 CrossRefGoogle Scholar
  22. Ngo T-A, Kim J, Kim S–S (2013) Fast pyrolysis of palm kernel cake using a fluidized bed reactor: design of experiment and characteristics of bio-oil. J Ind Eng Chem 19:137–143. doi:10.1016/j.jiec.2012.07.015 CrossRefGoogle Scholar
  23. Putun E, Uzun BB, Putun AE (2006) Fixed-bed catalytic pyrolysis of cotton-seed cake: effects of pyrolysis temperature, natural zeolite content and sweeping gas flow rate. Bioresour Technol 97:701–710. doi:10.1016/j.biortech.2005.04.005 CrossRefGoogle Scholar
  24. Raja SA, Kennedy ZR, Pillai BC, Lee C (2010) Flash pyrolysis of jatropha oil cake in electrically heated fluidized bed reactor. Energy 35:2819–2823. doi:10.1016/j.energy.2010.03.011 CrossRefGoogle Scholar
  25. Shadangi KP, Mohanty K (2014) Thermal and catalytic pyrolysis of Karanja seed to produce liquid fuel. Fuel 115:434–442. doi:10.1016/j.fuel.2013.07.053 CrossRefGoogle Scholar
  26. Shadangi KP, Singh RK (2012) Thermolysis of polanga seed cake to bio-oil using semi batch reactor. Fuel 97:450–456. doi:10.1016/j.fuel.2012.02.058 CrossRefGoogle Scholar
  27. Torri C, Lesci IG, Fabbri D (2009) Analytical study on the production of a hydroxylactone from catalytic pyrolysis of carbohydrates with nanopowder aluminium titanate. J Anal Appl Pyrolysis 84:25–30. doi:10.1016/j.jaap.2008.10.002 CrossRefGoogle Scholar
  28. Ucar S, Karagoz S (2009) The slow pyrolysis of pomegranate seeds: the effect of temperature on the product yields and bio-oil properties. J Anal Appl Pyrol 84:151–156. doi:10.1016/j.jaap.2009.01.005 CrossRefGoogle Scholar
  29. Vassilev SV, Baxter D, Vassileva CG (2013) An overview of the behaviour of biomass during combustion: part I. Phase-mineral transformations of organic and inorganic matter. Fuel 112:391–449. doi:10.1016/j.fuel.2013.05.043 CrossRefGoogle Scholar
  30. Volli V, Singh RK (2012) Production of bio-oil from de-oiled cakes by thermal pyrolysis. Fuel 96:579–585. doi:10.1016/j.fuel.2012.01.016 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ChemistryKarabük UniversityKarabükTurkey
  2. 2.Science and Technology Research CenterBülent Ecevit UniversityZonguldakTurkey
  3. 3.Department of Occupational Health and SafetyKarabük UniversityKarabükTurkey
  4. 4.Department of Polymer EngineeringKarabük UniversityKarabükTurkey

Personalised recommendations