Spark spectrometry of toxic smokes: towards a portable, inexpensive, and high-resolution environment monitoring instrument

  • 204 Accesses

  • 2 Citations


Inductively coupled plasma mass spectrometry and laser-induced breakdown spectroscopy are the most popular techniques for monitoring toxic gases in the environments. Apart from sensitivity and resolution of the techniques, they suffer from several issues including portability and high cost. For design and realization of a low cost, spark spectrometry based portable instrument for monitoring toxic gases in our environments is the main motive of the present work. We have introduced several toxic smokes into a gas chamber containing our developed instrument. We have also investigated the capability of the instrument for online analysis of suspended particulate matter as well as various gaseous elements in the smokes. We have also developed software for the practical interface. The apparatus has been successfully tested to monitor several toxic fumes including cigarette smoke and NO x . It has also been demonstrated that the instrument is equally efficient to monitor air quality in the open environment, for example, presence of nitrogen, oxygen, and water vapor in the ambient condition. In the present work, we have demonstrated some important spectroscopic studies including role of water vapor (solvation) in the ionization of potassium, which is an active ingredient of toxic smokes, in the ionization which leading to the generation of atomic emission under the spark spectrometer can also be achieved with our instrument. The sensitivity of the instrument is found to be sub ppm (0.27 ± 0.13 ppm) in the case of cigarette smoke in ambient condition. The simplicity and extremely cost-effective design can provide an alternative method of detection of fumes in air and can serve as a cheap alternative for costly/bulky bench-top instruments.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Álvarez-Llamas G, Fernández de laCampa MadR, Sanz-Medel A (2005) ICP-MS for specific detection in capillary electrophoresis. TrAC Trends Anal Chem 24(1):28–36. doi:10.1016/j.trac.2004.09.007

  2. Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cycles 15(4):955–966

  3. Bachmann R, Ottinger C, Vilesov AF (1993) A new band system of nitrogen: observation of the N2G3g → W3u transition. J Chem Phys 99(5):3262–3267

  4. Bonn G (2003) Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide. 46–56

  5. Boyle P (1997) Cancer, cigarette smoking and premature death in Europe: a review including the Recommendations of European Cancer Experts Consensus Meeting, Helsinki, October 1996. Lung Cancer 17(1):1–60. doi:10.1016/S0169-5002(97)00648-X

  6. Cao J, Yang C, Li J, Chen R, Chen B, Gu D, Kan H (2011) Association between long-term exposure to outdoor air pollution and mortality in China: a cohort study. J Hazard Mater 186(2):1594–1600

  7. Chang MJ, Naworal JD, Walker K, Connell CT (2003) Investigations on the direct introduction of cigarette smoke for trace elements analysis by inductively coupled plasma mass spectrometry. Spectrochim Acta Part B 58(11):1979–1996

  8. Chang MJ, Naworal JD, Connell CT (2006) Direct introduction of cigarette smoke for puff-by-puff trace metals analysis by inductively coupled plasma mass spectrometry. J Anal At Spectrom 21(6):574–581

  9. Coquart B, Jenouvrier A, Merienne MF (1995) The NO2 absorption spectrum. II. Absorption cross-sections at low temperatures in the 400–500 nm region. J Atmos Chem 21(3):251–261. doi:10.1007/BF00696757

  10. Duan F, Liu X, Yu T, Cachier H (2004) Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos Environ 38(9):1275–1282. doi:10.1016/j.atmosenv.2003.11.037

  11. Dube MF, Green C (1982) Methods of collection of smoke for analytical purposes. Recent Adv Tob Sci 8:42–102

  12. Estrellan CR, Iino F (2010) Toxic emissions from open burning. Chemosphere 80(3):193–207. doi:10.1016/j.chemosphere.2010.03.057

  13. Fielding JE (1985) Smoking: health effects and control. N Engl J Med 313(8):491–498. doi:10.1056/NEJM198508223130807

  14. Francis P, Maciejewski A, Oppenheimer C, Chaffin C, Caltabiano T (1995) SO2: HCl ratios in the plumes from Mt. Etna and Vulcano determined by Fourier Transform Spectroscopy. Geophys Res Lett 22(13):1717–1720

  15. Frey W, Sack M, Wuestner R, Mueller G (2009) Gas-insulated self-breakdown spark gaps: aspects on low-scattering and long-lifetime switching. Acta Phys Pol-Series A 115(6):1016–1018

  16. Fukuchi T (2009) Infrared absorption spectroscopy measurement of SO x using tunable infrared laser. IEEJ Trans Fundam Mater 129:809–814

  17. Galanter M, Levy H, Carmichael GR (2000) Impacts of biomass burning on tropospheric CO, NOx, and O3. J Geophys Res 105(D5):6633–6653

  18. Ionov DA, Savoyant L, Dupuy C (1992) Application of the Icp-Ms technique to trace element analysis of peridotites and their minerals. Geostand Newsl 16(2):311–315. doi:10.1111/j.1751-908X.1992.tb00494.x

  19. Jenner GA, Longerich HP, Jackson SE, Fryer BJ (1990) ICP-MS: a powerful tool for high-precision trace-element analysis in Earth sciences: Evidence from analysis of selected U.S.G.S. Reference samples. Chem Geol 83(1–2):133–148. doi:10.1016/0009-2541(90)90145-W

  20. Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151(2):362–367. doi:10.1016/j.envpol.2007.06.012

  21. Kasuya K, Okayama H, Watanabe M (1999) New method for thin-film formation with cryogenic diode and cryogenic target. Fusion Eng Des 44(1):327–330

  22. Krstulović N, Labazan I, Milošević S, Cvelbar U, Vesel A, Mozetič M (2006) Optical emission spectroscopy characterization of oxygen plasma during treatment of a PET foil. J Phys D 39(17):3799–3804

  23. Kuffel J, Kuffel E, Zaengl W (2000) High voltage engineering fundamentals. Elsevier Science and Technology Books, Oxford

  24. Leahy-Hoppa MR, Miragliotta J, Osiander R, Burnett J, Dikmelik Y, McEnnis C, Spicer JB (2010) Ultrafast laser-based spectroscopy and sensing: applications in LIBS, CARS, and THz spectroscopy. Sensors 10(5):4342–4372

  25. Löfroth G (1989) Environmental tobacco smoke: overview of chemical composition and genotoxic components. Mutat Res-Genet Toxicol 222(2):73–80

  26. Marcq E, Bézard B, Drossart P, Piccioni G, Reess J, Henry F (2008) A latitudinal survey of CO, OCS, H2O, and SO2 in the lower atmosphere of venus: spectroscopic studies using VIRTIS-H. J Geophys Res 113(E5):E00B07(01)–E00B07(09)

  27. Martin RV (2008) Satellite remote sensing of surface air quality. Atmos Environ 42(34):7823–7843. doi:10.1016/j.atmosenv.2008.07.018

  28. Menad N, Björkman B, Allain EG (1998) Combustion of plastics contained in electric and electronic scrap. Resour Conserv Recycling 24(1):65–85. doi:10.1016/S0921-3449(98)00040-8

  29. Menzel DB (1976) The role of free radicals in the toxicity of air pollutants (nitrogen oxides and ozone). Free Radic Biol 2:181–202

  30. Mérienne MF, Jenouvrier A, Coquart B (1995) The NO2 absorption spectrum. I: absorption cross-sections at ambient temperature in the 300–500 nm region. J Atmos Chem 20(3):281–297. doi:10.1007/BF00694498

  31. Milosavljević V, Ellingboe A, Daniels S (2011) Influence of plasma chemistry on oxygen triplets. Eur Phys J D 64(2–3):437–445

  32. Mohamed WTY (2008) Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera. Opt Laser Technol 40(1):30–38. doi:10.1016/j.optlastec.2007.04.004

  33. Partanen L, Mikkelä M-H, Huttula M, Tchaplyguine M, Zhang C, Andersson T, Björneholm O (2013) Solvation at nanoscale: alkali-halides in water clusters. J Chem Phys 138:044301–044308

  34. Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Am Med Assoc 287(9):1132–1141

  35. Pope CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ (2004) Cardiovascular mortality and long-term exposure to particulate air pollution epidemiological evidence of general pathophysiological pathways of disease. Circulation 109(1):71–77

  36. Puckrin E, Evans WFJ, Adamson TAB (1996) Measurement of tropospheric ozone by thermal emission spectroscopy. Atmos Environ 30(4):563–568. doi:10.1016/1352-2310(95)00319-3

  37. Ralchenko Y (2005) NIST atomic spectra database. Memorie della Societa Astronomica Italiana Supplementi 8:96–102

  38. Regalado J, Pérez-Padilla R, Sansores R, Paramo Ramirez JI, Brauer M, Paré P, Vedal S (2006) The effect of biomass burning on respiratory symptoms and lung function in rural Mexican women. Am J Respir Crit Care Med 174(8):901–905

  39. Song K, Lee Y-I, Sneddon J (2002) Recent developments in instrumentation for laser induced breakdown spectroscopy. Appl Spectrosc Rev 37(1):89–117

  40. Vodacek A, Kremens R, Fordham A, VanGorden S, Luisi D, Schott J, Latham D (2002) Remote optical detection of biomass burning using a potassium emission signature. Int J Remote Sens 23(13):2721–2726

  41. Wannamethee SG, Lever AF, Shaper AG, Whincup PH (1997) Serum potassium, cigarette smoking, and mortality in middle-aged men. Am J Epidemiol 145(7):598–606

  42. Winter B, Weber R, Hertel IV, Faubel M, Jungwirth P, Brown EC, Bradforth SE (2005) Electron binding energies of aqueous alkali and halide ions: EUV photoelectron spectroscopy of liquid solutions and combined ab initio and molecular dynamics calculations. J Am Chem Soc 127(19):7203–7214. doi:10.1021/ja042908l

  43. Y-I LEE, Sneddon J (2002) Recent developments in laser-induced breakdown spectrometry. ISIJ Int 42:S129–S136

  44. Zhang C, Andersson T, Svensson S, Björneholm O, Huttula M, Mikkelä M-H, Tchaplyguine M, Öhrwall G (2011) Ionic bonding in free nanoscale NaCl clusters as seen by photoelectron spectroscopy. J Chem Phys 134:124507–124517

  45. Zhang C, Andersson T, Svensson S, Björneholm O, Huttula M, Mikkelä M-H, Anin D, Tchaplyguine M, Öhrwall G (2012) Holding onto electrons in alkali metal halide clusters: decreasing polarizability with increasing coordination. J Phys Chem A 116(49):12104–12111. doi:10.1021/jp307786z

Download references


S. S. acknowledges DST, Govt. of India, for its financial support through IRHPA Project “Study of Cosmic Ray aerosol cloud connection in the context of regional Climate change” at Bose Institute, Darjeeling. We thank Prof. Sibaji Raha, Director, Bose Institute and Prof. Sanjay Kr. Ghosh, Bose Institute for their valuable inputs and their constant support throughout this work. N.P thanks DST, India for Inspire Research Fellowship. We thank DST, India for financial grants (DST/TM/SERI/2k11/103 & SB/S1/PC-011/2013).

Author information

Correspondence to Samir Kumar Pal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 13336 kb)

Supplementary material 1 (AVI 13336 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singh, S., Polley, N., Mitra, A. et al. Spark spectrometry of toxic smokes: towards a portable, inexpensive, and high-resolution environment monitoring instrument. Clean Techn Environ Policy 16, 1703–1712 (2014).

Download citation


  • High voltage spark
  • Spark emission spectroscopy
  • Low-cost design
  • Environmental pollution detection
  • RGB analysis
  • Optical filters
  • Data acquisition