Advertisement

Clean Technologies and Environmental Policy

, Volume 15, Issue 3, pp 525–536 | Cite as

Comparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resources

  • Khurram ShahzadEmail author
  • Karl-Heinz Kettl
  • Michaela Titz
  • Martin Koller
  • Hans Schnitzer
  • Michael Narodoslawsky
Original Paper

Abstract

Realizing a sustainable development of our planet requires a reduction of waste production, harmful emissions, and higher energy efficiency as well as utilization of renewable energy sources. One pathway to this end is the design of sustainable biorefinery concepts. Utilizing waste streams as raw material is gaining great importance in this respect. This reduces environmental burden and may at the same time contribute to economic performance of biorefineries. This paper investigates the utilization of slaughtering waste to produce biodegradable polyesters, polyhydroxyalkanoates (PHA), via bioconversion. PHA are the target product while production of high quality biodiesel along with meat and bone meal (MBM) as by-products improves the economic performance of the process. The paper focuses on ecological comparison of different production scenarios and the effect of geographical location of production plants taking different energy production technologies and resources into account; ecological footprint evaluation using Sustainable Process Index methodology was applied. Keeping in mind that the carbon source for PHA production is produced from waste by energy intensive rendering process, the effect of available energy mixes in different countries becomes significant. Ecological footprint results from the current study show a bandwidth from 372,950 to 956,060 m2/t PHA production, depending on the energy mix used in the process which is compared to 2,508,409 m2/t for low density polyethylene.

Keywords

PHA Biopolymers Animal residues Energy resources Sustainable Process Index Ecological footprint 

List of Symbols

AT

Austria

AR

Area for resources

AE

Area for energy consumption

AI

Area for installations

AS

Area for services

AD

Area for dissipation

Atot

Total area

atot = Atot/NP

Total area per service unit

CN

Canada

DE

Germany

DK

Denmark

IT

Italy

FR

France

NO

Norway

PL

Poland

USA

United States of America

Notes

Acknowledgments

The authors gratefully acknowledge the financial support provided by the European Commission by granting the project “Biotechnological conversion of carbon containing wastes for eco-efficient production of high added value products”, Acronym ANIMPOL (Contract No: 245084).

References

  1. ANIMPOL is used as an “Acronym” for a project financed by European Commission with in 7th framework programme (FP7) aimed “Biotechnological conversion of carbon containing wastes for eco-efficient production of high added value products” (Contract No: 245084)Google Scholar
  2. Braunegg G, Bona R, Koller M (2004) Sustainable polymer production. Polym Plast Technol Eng 43(6):1779–1974. doi: 10.1081/PPT-200040130 Google Scholar
  3. Chen GQ (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Chen GQ, Steinbüchel A (eds) Plastics from bacteria. Natural functions and applications. Springer, Berlin, pp 17–38CrossRefGoogle Scholar
  4. Chiellini E, Cinelli P, Chiellini F, Imam SH (2004) Environmentally degradable bio-based polymeric blends and composites. Macromol Biosci 4(3):218–231. doi: 10.1002/mabi.200300126 CrossRefGoogle Scholar
  5. Čuček L, Klemeš JJ, Kravanja Z (2012) A review of footprint analysis tools for monitoring impacts on sustainability. J Clean Prod 34:9–20. doi: 10.1016/j.jclepro.2012.02.036 CrossRefGoogle Scholar
  6. Eurostat (2009) Panorama of energy. Energy statistics to support EU policies and solutions. ISBN 978-92-79-11151-8, ISSN 1831-3256, doi: 10.2785/26846, Cat. No. KS-GH-09-001-EN-C
  7. Gwehenberger G, Narodoslawsky M (2007) The ecological impact of the sugar sector—aspects of the change of a key industrial sector in Europe. Comput Aided Chem Eng 24:1029–1034. doi: 10.1016/S1570-7946(07)80196-9 CrossRefGoogle Scholar
  8. Hany R, Bohlen C, Geiger T, Schmid M, Zinn M (2004) Toward non-toxic antifouling: synthesis of hydroxy-, cinnamic acid-, sulfate-, and zosteric acid-labeled poly[3-hydroxyalkanoates]. Biomacromolecules 5:1452–1456. doi: 10.1021/bm049962e CrossRefGoogle Scholar
  9. International Energy Agency (IEA), World Energy Outlook (2009) Organization for Economic Cooperation and Development. www.iea.org/stats/index.asp. Accessed 14 Jan 2013
  10. Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13(3):321–326. doi: 10.1016/j.mib.2010.02.006 CrossRefGoogle Scholar
  11. Kettl KH, Niemetz N, Sandor N, Eder M, Narodoslawsky M (2011) Ecological impact of renewable resource-based energy technologies. J Fundam Renew Energy Appl. doi: 10.4303/jfrea/R101101 Google Scholar
  12. Khardenavis AA, Kumar MS, Mudliar SN, Chakrabarti T (2007) Biotechnological conversion of agro-industrial wastewaters into biodegradable plastic, poly-β-hydroxybutyrate. Bioresour Technol 98:3579–3584. doi: 10.1016/j.biortech.2006.11.024 CrossRefGoogle Scholar
  13. Dr. Martin Koller, Graz University of Technology, “Institute of Biotechnology and Biochemical Engineering”, martin.koller@tugraz.atGoogle Scholar
  14. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Varila P, Pereira L (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6:561–565. doi: 10.1021/bm049478b CrossRefGoogle Scholar
  15. Koller M, Atlić A, Dias M, Reiterer A, Braunegg G (2010a) Microbial PHA production from waste raw materials. In: Chen G-Q, Steinbüchel A (eds) Plastics from bacteria. Natural functions and applications, vol 14. Springer, Berlin, pp 85–119. doi: 10.1007/978-3-642-03287-5_5
  16. Koller M, Salerno A, Miranda de Sousa DM, Reiterer A, Braunegg G (2010b) Modern biotechnological polymer synthesis: a review. Food Technol Biotechnol 48(3):255–269Google Scholar
  17. Koller M, Salerno A, Tuffner P, Koinigg M, Böchzelt H, Schober S, Pieber S, Schnitzer H, Mittelbach M, Braunegg G (2012a) Characteristics and potential of micro algal cultivation strategies. J Clean Prod 37:377–388. doi: 10.1016/j.jclepro.2012.07.044 CrossRefGoogle Scholar
  18. Koller M, Salerno A, Muhr A, Reiterer A, Chiellini E, Casella, S, Horvat P, Braunegg G (2012b) Whey lactose as a raw material for microbial production of biodegradable polyesters. Polyester 51–92. doi: 10.5772/48737
  19. Koller M, Salerno A, Muhr A, Reiterer A, Braunegg G (2013) Polyhydroxyalkanoates: biodegradable polymeric materials from renewable resources. Mater Technol 47. doi: 10.1016/j.jbiotec.2013.02.003
  20. Krotscheck C, Narodoslawsky M (1996) The sustainable process index; a new dimension in ecological evaluation. Ecol Eng 6(4):241–258. doi: 10.1016/0925-8574(95)00060-7 CrossRefGoogle Scholar
  21. Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. eXPRESS Polym Lett 5(7):620–634. doi: 10.3144/expresspolymlett.2011.6d CrossRefGoogle Scholar
  22. Narodoslawsky M, Krotscheck C (1995) The sustainable process index (SPI): evaluating processes according to environmental compatibility. J Hazard Mater 41(2–3):383–397. doi: 10.1016/0304-3894(94)00114-V CrossRefGoogle Scholar
  23. Narodoslawsky M, Krotscheck C (2004) What can we learn from ecological valuation of processes with the sustainable process index (SPI)—the case study of energy production systems. J Clean Prod 12:111–115. doi: 10.1016/S0959-6526(02)00184-1 CrossRefGoogle Scholar
  24. OECD (2002) Glossary of statistical terms. http://stats.oecd.org/glossary/detail.asp?ID=4097. Accessed 14 Jan 2013
  25. Patel MK, Bastioli C, Marini L, Wurdinger GE (2005) Life-cycle assessment of bio-based polymers and natural fiber composites environmental assessment of bio-based polymers and natural fibres. Biopolymers. doi: 10.1002/3527600035.bpola014 (Willey, Online Library)Google Scholar
  26. Pickering MV, Newton P (1990) Amino acid hydrolysis: old problems, new solutions. Bioseparations 8(10):778–781Google Scholar
  27. Rees W, Wackernagel M (1996) Urban ecological footprints: why cities cannot be sustainable—and why they are a key to sustainability. Environ Impact Assess Rev 16:223–248CrossRefGoogle Scholar
  28. Rupp B, Ebner C, Rossegger E, Slugovc C, Stelzer F, Wiesbrock F (2010) UV-induced crosslinking of the biopolyester poly(3-hydroxybutyrate)-co-(3-hydroxyvalerate). Green Chem 12:1796–1802. doi: 10.1039/C0GC00066C CrossRefGoogle Scholar
  29. Sandholzer D, Narodoslawsky M (2007) SPIonExcel—fast and easy calculation of the Sustainable Process Index via computer. Resour Conserv Recycl 50:130–142. doi: 10.1016/j.resconrec.2006.06.012 CrossRefGoogle Scholar
  30. Shrivastav A, Mishra SK, Shethia B, Pancha I, Jain D, Mishra S (2010) Isolation of promising bacterial strains from soil and marine environment for polyhydroxyalkanoates (PHAs) production utilizing Jatropha biodiesel byproduct. Int J Biol Macromol 47(2):283–287. doi: 10.1016/j.ijbiomac.2010.04.007 CrossRefGoogle Scholar
  31. Solaiman DKY, Ashby RD, Foglia TA, Marmer WN (2006) Conversion of agricultural feedstock and co-products into poly(hydroxyalkanoates). Appl Microbiol Biotechnol 71:783–789. doi: 10.1007/s00253-006-0451-1 CrossRefGoogle Scholar
  32. Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 3:219–228. doi: 10.1111/j.1574-6968.1995.tb07528.x CrossRefGoogle Scholar
  33. Stoeglehner G, Niemetz N, Kettl KH (2011) Spatial dimensions of sustainable energy systems: new visions for integrated spatial and energy planning. Energy Sustain Soc 1:2. doi: 10.1186/2192-0567-1-2 CrossRefGoogle Scholar
  34. Sudesh K, Iwata T (2008) Sustainability of biobased and biodegradable plastics. Clean Soil Air Water 36(5–6):433–442. doi: 10.1002/clen.200700183 CrossRefGoogle Scholar
  35. Titz M, Kettl K-H, Shazhad K, Koller M, Schnitzer H, Narodoslawsky M (2012) Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technol Environ Policy 14(3):495–503. doi: 10.1007/s10098-012-0464-7 CrossRefGoogle Scholar
  36. Woodgate S, Van der Veen J (2004) The role of fat processing and rendering in the European Union animal production industry. Biotechnol Agron Soc Environ 8:283–294Google Scholar
  37. Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21. doi: 10.1016/S0169-409X(01)00218-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Khurram Shahzad
    • 1
    Email author
  • Karl-Heinz Kettl
    • 1
  • Michaela Titz
    • 1
  • Martin Koller
    • 2
  • Hans Schnitzer
    • 1
  • Michael Narodoslawsky
    • 1
  1. 1.Institute for Process and Particle EngineeringGraz University of TechnologyGrazAustria
  2. 2.Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyGrazAustria

Personalised recommendations