Antimicrobial Stewardship in Hematological Patients at the intensive care unit: a global cross-sectional survey from the Nine-i Investigators Network

  • Jordi Rello
  • Cristina SardaEmail author
  • Djamel Mokart
  • Kostoula Arvaniti
  • Murat Akova
  • Alexis Tabah
  • Elie Azoulay
  • on behalf of The Nine-I study Group
Original Article


A global cross-sectional survey was performed to gather data on the current treatment of infections caused by multidrug-resistant (MDR) bacteria among hematological patients admitted to ICUs worldwide. The survey was performed in April 2019 using an electronic platform (SurveyMonkey®) being distributed among 83 physicians and completed by 48 (57.8%) responders. ESBL Enterobacteriaceae, carbapenem-resistant K. pneumoniae and carbapenem-resistant P. aeruginosa were the main concerns. Previous MDR infection (34% of responders), MDR colonization (20%) and previous antibiotic exposure within the last 3 months (20.5%) were considered the most relevant risk factors of bloodstream infection (BSI) due to MDR bacteria. In 48.8% of the ICUs, there was no antimicrobial stewardship (AMS) team focused on hematological patients. Updates on local epidemiology of MDR pathogens were provided in 98% of the centers, using phone or verbal communications (56.1% and 53.7%, respectively). In presence of febrile neutropenia, initial therapy consisted of anti-Gram-negative plus anti-Gram-positive antibiotics for 41% of participants. Antibiotic de-escalation and/or discontinuation of therapy were considered as a promising strategy for the prevention of MDR development (32.4%). Factors associated with antibiotic de-escalation were clinical improvement (43.6%) and neutrophil count recovery (12.8%). Infectious Disease consultation and AMS interventions were not determining factors for de-escalation decisions (more than 50% of responders). Infection control and educational programs were valued as necessary measures for implementation by ICU practitioners. These findings should guide future efforts on collaborative team working, improving compliance with adequate treatment protocols, implementing antimicrobial stewardship programs in critically ill hematological patients, and educational activities.


Multidrug-resistant (MDR) bacteria Difficult to treat organisms Antimicrobial de-escalation (ADE) Antimicrobial stewardship (AMS) Pneumonia Febrile neutropenia (FN) Intensive care unit Septic shock 



We appreciate comments in the design from the following: Carolina Garcia-Vidal (Barcelona, Spain), M. Santos Lurdes (Porto, Portugal), Pedro Palma-Martins (Porto, Portugal). The study was developed in part of an Observership Programme, ESCMID, Basel; Switzerland (Cristina Sarda).

Funding information

The study was funded in part by Centro de Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES). Instituto de Salud Carlos III, Madrid, Spain and the Observership Programme of ESCMID, Basel, Switzerland (CS).

Compliance with ethical standards

Conflict of interest

Jordi Rello served a consultant or in the speakers bureau for Merck, Anchoagen, Pfizer, ROCHE and in the speakers bureau for Pfizer. Other authors have no conflicts of interest to declare.


  1. 1.
    Ruhnke M, Arnold R, Gastmeier P (2014) Infection control issues in patients with haematological malignancies in the era of multidrug-resistant bacteria. Lancet Oncol 15:e606–e619PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Madani TA (2000) Clinical infections and bloodstream isolates associated with fever in patients undergoing chemotherapy for acute myeloid leukemia. Infection 28:367–374PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Wisplinghoff H, Seifert H, Wenzel RP, Edmond MB (2003) Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin Infect Dis 36:1103–1110PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Nørgaard M, Larsson H, Pedersen G, Schønheyder HC, Sørensen HT (2006) Risk of bacteraemia and mortality in patients with haematological malignancies. Clin Microbiol Infect 12:217–223PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Montassier E, Batard E, Gastinne T, Potel G, de La Cochetière MF (2013) Recent changes in bacteremia in patients with cancer: a systematic review of epidemiology and antibiotic resistance. Eur J Clin Microbiol Infect Dis 32:841–850PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Collin BA, Leather HL, Wingard JR, Ramphal R (2001) Evolution, incidence, and susceptibility of bacterial bloodstream isolates from 519 bone marrow transplant patients. Clin Infect Dis 33:947–953PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Zhu J, Zhou K, Jiang Y et al (2018) Bacterial pathogens differed between neutropenic and non-neutropenic patients in the same hematological ward: an 8-year survey. Clin Infect Dis 67:S174–S178PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Gudiol C, Bodro M, Simonetti A, Tubau F, González-Barca E, Cisnal M, Domingo-Domenech E, Jiménez L, Carratalà J (2013) Changing aetiology, clinical features, antimicrobial resistance, and outcomes of bloodstream infection in neutropenic cancer patients. Clin Microbiol Infect 19:474–479PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Pagano L, Caira M, Trecarichi EM, Spanu T, Di Blasi R, Sica S, Sanguinetti M, Tumbarello M (2014) Carbapenemase-producing Klebsiella pneumoniae and hematologic malignancies. Emerg Infect Dis 20:1235–1236PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Trecarichi EM, Pagano L, Candoni A et al (2015) Current epidemiology and antimicrobial resistance data for bacterial bloodstream infections in patients with hematologic malignancies: an Italian multicentre prospective survey. Clin Microbiol Infect 21:337–343PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Morris PG, Hassan T, McNamara M, Hassan A, Wiig R, Grogan L, Breathnach OS, Smyth E, Humphreys H (2008) Emergence of MRSA in positive blood cultures from patients with febrile neutropenia—a cause for concern. Support Care Cancer 16:1085–1088PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Weinstock DM, Conlon M, Iovino C, Aubrey T, Gudiol C, Riedel E, Young JW, Kiehn TE, Zuccotti G (2007) Colonization, bloodstream infection, and mortality caused by vancomycin-resistant enterococcus early after allogeneic hematopoietic stem cell transplant. Biol Blood Marrow Transplant 13:615–621PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Trecarichi EM, Tumbarello M (2014) Antimicrobial-resistant Gram-negative bacteria in febrile neutropenic patients with cancer. Curr Opin Infect Dis 27:200–210PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Bow EJ (2013) There should be no ESKAPE for febrile neutropenic cancer patients: the dearth of effective antibacterial drugs threatens anticancer efficacy. J Antimicrob Chemother 68:492–495PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Cattaneo C, Di Blasi R, Skert C et al (2018) Bloodstream infections in haematological cancer patients colonized by multidrug-resistant bacteria. Ann Hematol 97:1717–1726PubMedCrossRefGoogle Scholar
  16. 16.
    Stern A, Carrara E, Bitterman R, Yahav D, Leibovici L, Paul M (2019) Early discontinuation of antibiotics for febrile neutropenia versus continuation until neutropenia resolution in people with cancer. Cochrane Database Syst Rev 1:CD012184PubMedGoogle Scholar
  17. 17.
    Puerta-Alcalde P, Cardozo C, Suárez-Lledó M et al (2018) Current time-to-positivity of blood cultures in febrile neutropenia: a tool to be used in stewardship de-escalation strategies. Clin Microbiol Infect. PubMedCrossRefGoogle Scholar
  18. 18.
    Tabah A, Cotta MO, Garnacho-Montero J et al (2016) A systematic review of the definitions, determinants, and clinical outcomes of antimicrobial de-escalation in the intensive care unit. Clin Infect Dis 62:1009–1017PubMedCrossRefGoogle Scholar
  19. 19.
    Aguilar-Guisado M, Espigado I, Martín-Peña A et al (2017) Optimisation of empirical antimicrobial therapy in patients with haematological malignancies and febrile neutropenia (How Long study): an open-label, randomised, controlled phase 4 trial. Lancet Haematol 4:e573–e583PubMedCrossRefGoogle Scholar
  20. 20.
    Madran B, Keske Ş, Tokça G, Dönmez E, Ferhanoğlu B, Çetiner M, Mandel NM, Ergönül Ö (2018) Implementation of an antimicrobial stewardship program for patients with febrile neutropenia. Am J Infect Control 46:420–424PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Mokart D, Slehofer G, Lambert J et al (2014) De-escalation of antimicrobial treatment in neutropenic patients with severe sepsis: results from an observational study. Intensive Care Med 40:41–49PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Ruiz-Ramos J, Frasquet J, Poveda-Andrés JL, Romá E, Salavert-Lleti M, Castellanos Á, Ramirez P (2017) Impact of an antimicrobial stewardship program on critical haematological patients. Farm Hosp 41:479–487PubMedPubMedCentralGoogle Scholar
  23. 23.
    Averbuch D, Cordonnier C, Livermore DM et al (2013) Targeted therapy against multi-resistant bacteria in leukemic and hematopoietic stem cell transplant recipients: guidelines of the 4th European Conference on Infections in Leukemia (ECIL-4, 2011). Haematologica 98:1836–1847PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Averbuch D, Orasch C, Cordonnier C et al (2013) European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: summary of the 2011 4th European Conference on Infections in Leukemia. Haematologica 98:1826–1835PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sarda C, Tabah A, Mokart D, Alp E, Arvaniti K, Akova M, Rello J (2019) Critically Hematological Ill Patients Antimicrobial Stewardship (C.H.I.P.S) in intensive care unit: a global cross-sectional survey—an international research project within the Nine-i investigators network. J Emerg Crit Care Med 3:20–20CrossRefGoogle Scholar
  26. 26.
    Magiorakos A-P, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    EUCAST (2018) European Committee on Antimicrobial Susceptibility Testing Antifungal Agents Breakpoint tables for interpretation of MICs European Committee on Antimicrobial Susceptibility Testing Antifungal Agents Breakpoint tables for interpretation of MICs. EucastGoogle Scholar
  28. 28.
    Kadri SS, Adjemian J, Lai YL et al (2018) Difficult-to-treat resistance in gram-negative bacteremia at 173 US hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis 67:1803–1814PubMedPubMedCentralGoogle Scholar
  29. 29.
    Malak S, Sotto J-J, Ceccaldi J et al (2014) Ethical and clinical aspects of intensive care unit admission in patients with hematological malignancies: guidelines of the Ethics Commission of the French Society of hematology. Adv Hematol 2014:1–8CrossRefGoogle Scholar
  30. 30.
    MacVane SH (2017) Antimicrobial resistance in the intensive care unit. J Intensive Care Med 32:25–37PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Tatarelli P, Mikulska M (2016) Multidrug-resistant bacteria in hematology patients: emerging threats. Future Microbiol 11:767–780PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Trecarichi EM, Tumbarello M, Spanu T, Caira M, Fianchi L, Chiusolo P, Fadda G, Leone G, Cauda R, Pagano L (2009) Incidence and clinical impact of extended-spectrum-β-lactamase (ESBL) production and fluoroquinolone resistance in bloodstream infections caused by Escherichia coli in patients with hematological malignancies. J Inf Secur 58:299–307Google Scholar
  33. 33.
    Pulcini C, Binda F, Lamkang AS et al (2019) Developing core elements and checklist items for global hospital antimicrobial stewardship programmes: a consensus approach. Clin Microbiol Infect. PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Campion M, Scully G (2018) Antibiotic use in the intensive care unit: optimization and de-escalation. J Intensive Care Med 33:647–655PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Vazquez Guillamet C, Kollef MH (2018) Acinetobacter pneumonia: improving outcomes with early identification and appropriate therapy. Clin Infect Dis 67:1455–1462PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Bassetti M, Righi E, Vena A, Graziano E, Russo A, Peghin M (2018) Risk stratification and treatment of ICU-acquired pneumonia caused by multidrug-resistant/ extensively drug-resistant/pandrug-resistant bacteria. Curr Opin Crit Care. PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Klastersky J, de Naurois J, Rolston K, Rapoport B, Maschmeyer G, Aapro M, Herrstedt J (2016) Management of febrile neutropaenia: ESMO clinical practice guidelines†. Ann Oncol 27:v111–v118PubMedCrossRefGoogle Scholar
  38. 38.
    Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, Raad II, Rolston KV, Young J-AH, Wingard JR (2011) Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis 52:e56–e93PubMedCrossRefGoogle Scholar
  39. 39.
    Rello J, Kalwaje Eshwara V, Conway-Morris A, Lagunes L, Alves J, Alp E, Zhang Z, Mer M, TOTEM Study Investigators (2019) Perceived differences between intensivists and infectious diseases consultants facing antimicrobial resistance: a global cross-sectional survey. Eur J Clin Microbiol Infect Dis 38:1235–1240PubMedCrossRefGoogle Scholar
  40. 40.
    Vos LM, Bruning AHL, Reitsma JB, Schuurman R, Riezebos-Brilman A, Hoepelman AIM, Oosterheert JJ (2019) Rapid molecular tests for influenza, respiratory syncytial virus, and other respiratory viruses: a systematic review of diagnostic accuracy and clinical impact studies. Clin Infect Dis 69:1243–1253PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Penack O, Becker C, Buchheidt D et al (2014) Management of sepsis in neutropenic patients: 2014 updated guidelines from the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology (AGIHO). Ann Hematol 93:1083–1095PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Bonomo RA (2017) β-Lactamases: a focus on current challenges. Cold Spring Harb Perspect Med 7:a025239PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA (2011) Carbapenems: past, present, and future. Antimicrob Agents Chemother 55:4943–4960PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jordi Rello
    • 1
    • 2
  • Cristina Sarda
    • 3
    Email author
  • Djamel Mokart
    • 4
  • Kostoula Arvaniti
    • 5
  • Murat Akova
    • 6
  • Alexis Tabah
    • 7
    • 8
  • Elie Azoulay
    • 9
  • on behalf of The Nine-I study Group
  1. 1.CRIPS DepartmentVall d’Hebron Institute of Research (VHIR)BarcelonaSpain
  2. 2.Centro Investigacion Biomedica en Red (CIBERES)Institut Salud Carlos IIIBarcelonaSpain
  3. 3.Infectious Diseases Department, Fondazione IRCCS Policlinico San Matteo PaviaUniversity of PaviaPaviaItaly
  4. 4.Réanimation Polyvalente et Département d’Anesthésie et de RéanimationInstitut Paoli-CalmettesMarseilleFrance
  5. 5.Intensive Care UnitPapageorgiou University Affiliated HospitalThessalonikiGreece
  6. 6.Department of Infectious DiseasesHacettepe University School of MedicineAnkaraTurkey
  7. 7.Intensive Care UnitRedcliffe and Caboolture HospitalsBrisbaneAustralia
  8. 8.Faculty of MedicineUniversity of Queensland BrisbaneSt LuciaAustralia
  9. 9.Départment of Soins IntensifsHôpital Saint LouisParisFrance

Personalised recommendations