Advertisement

Clinical and virulence factors related to the 30-day mortality of Klebsiella pneumoniae bacteremia at a tertiary hospital: a case–control study

  • Hiroki Namikawa
  • Makoto Niki
  • Mamiko Niki
  • Koichi Yamada
  • Kiyotaka Nakaie
  • Arata Sakiyama
  • Ken-Ichi Oinuma
  • Taishi Tsubouchi
  • Yoshihiro Tochino
  • Yasuhiko Takemoto
  • Yukihiro Kaneko
  • Taichi Shuto
  • Hiroshi KakeyaEmail author
Original Article

Abstract

Klebsiella pneumoniae bacteremia is a critical clinical presentation that is associated with high mortality. However, extremely few studies have investigated the virulence factors related to mortality of K. pneumoniae bacteremia in patients. The present study elucidated clinical and virulence factors associated with the 30-day mortality of K. pneumoniae bacteremia at a tertiary hospital. The medical records of 129 patients with K. pneumoniae bacteremia admitted to Osaka City University Hospital between January 2012 and December 2018 were retrospectively reviewed. Patient background characteristics, antimicrobial regimens, and prognosis were evaluated. Additionally, virulence factors were assessed using multiplex polymerase chain reaction to elucidate their association with K. pneumoniae. The 30-day mortality was 10.9% in patients with K. pneumoniae bacteremia. The male-to-female ratio, age, and underlying disease did not differ between the non-survivor and survivor groups. Multivariate analysis showed that sepsis (odds ratio (OR), 7.46; p = 0.005) and iutA (OR, 4.47; p = 0.046) were independent predictors associated with the 30-day mortality of K. pneumoniae bacteremia. Despite the relatively low 30-day mortality of patients with K. pneumoniae bacteremia, the treatment of those with sepsis and those infected with K. pneumoniae harboring iutA may require careful management for improving their outcomes.

Keywords

Bacteremia iutA Klebsiella pneumoniae Mortality Sepsis 

Notes

Funding

This research was supported by the Research Program on Emerging and Re-emerging Infectious Diseases from the Japan Agency Development, AMED (Grant numbers JP 17fk0108208, 18fk0108052h0002, and 19fk0108094) and JSPS KAKENHI (Grant numbers 16K09939 and 19K16650).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

The study was approved by the Ethics Committee of Osaka City University, and the thesis was approved on Mar 22, 2019, with approval number 4299.

Informed consent

Not applicable to this study.

References

  1. 1.
    Magill SS, Edwards JR, Bamberg et al (2014) Multistate point-prevalence survey of health care-associated infections. N Engl J Med 370(13):1198–1208CrossRefGoogle Scholar
  2. 2.
    Kim D, Park BY, Choi MH et al (2019) Antimicrobial resistance and virulence factors of Klebsiella pneumoniae affecting 30 day mortality in patients with bloodstream infection. J Antimicrob Chemother 74(1):190–199PubMedGoogle Scholar
  3. 3.
    Li L, Huang H (2017) Risk factors of mortality in bloodstream infections caused by Klebsiella pneumonia: a single-center retrospective study in China. Medicine (Baltimore) 96(35):e7924CrossRefGoogle Scholar
  4. 4.
    Li J, Ren J, Wang W et al (2018) Risk factors and clinical outcomes of hypervirulent Klebsiella pneumoniae induced bloodstream infections. Eur J Clin Microbiol Infect Dis 37(4):679–689CrossRefGoogle Scholar
  5. 5.
    Shon AS, Bajwa RP, Russo TA (2013) Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 4(2):107–118CrossRefGoogle Scholar
  6. 6.
    Namikawa H, Yamada K, Fujimoto H et al (2016) Two unusual cases of successful treatment of hypermucoviscous Klebsiella pneumoniae invasive syndrome. BMC Infect Dis 16(1):680CrossRefGoogle Scholar
  7. 7.
    Catalán-Nájera JC, Garza-Ramos U, Barrios-Camacho H (2017) Hypervirulence and hypermucoviscosity: two different but complementary Klebsiella spp. phenotypes? Virulence 8(7):1111–1123CrossRefGoogle Scholar
  8. 8.
    Lery LM, Frangeul L, Tomas A et al (2014) Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol 12:41CrossRefGoogle Scholar
  9. 9.
    Russo TA, Olson R, MacDonald U et al (2015) Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect Immun 83(8):3325–3333CrossRefGoogle Scholar
  10. 10.
    Hooton TM (2012) Clinical practice. Uncomplicated urinary tract infection. N Engl J Med 366(11):1028–1037CrossRefGoogle Scholar
  11. 11.
    Hammond NA, Nikolaidis P, Miller FH (2012) Infectious and inflammatory diseases of the kidney. Radiol Clin North Am 50(2):259–270CrossRefGoogle Scholar
  12. 12.
    Magret M, Lisboa T, Martin-Loeches I et al (2011) Bacteremia is an independent risk factor for mortality in nosocomial pneumonia: a prospective and observational multicenter study. Crit Care 15(1):R62CrossRefGoogle Scholar
  13. 13.
    Mermel LA, Allon M, Bouza E et al (2009) Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 49(1):1–45CrossRefGoogle Scholar
  14. 14.
    Micek ST, Welch EC, Khan J et al (2010) Empiric combination antibiotic therapy is associated with improved outcome against sepsis due to Gram-negative bacteria: a retrospective analysis. Antimicrob Agents Chemother 54(5):1742–1748CrossRefGoogle Scholar
  15. 15.
    Compain F, Babosan A, Brisse S et al (2014) Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J Clin Microbiol 52(12):4377–4380CrossRefGoogle Scholar
  16. 16.
    Fang CT, Chuang YP, Shun CT et al (2004) A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 199(5):697–705CrossRefGoogle Scholar
  17. 17.
    Yu WL, Fung CP, Ko WC et al (2007) Polymerase chain reaction analysis for detecting capsule serotypes K1 and K2 of Klebsiella pneumoniae causing abscesses of the liver and other sites. J Infect Dis 195(8):1235–1236 author reply 1236CrossRefGoogle Scholar
  18. 18.
    Meatherall BL, Gregson D, Ross T et al (2009) Incidence, risk factors, and outcomes of Klebsiella pneumoniae bacteremia. Am J Med 122(9):866–873CrossRefGoogle Scholar
  19. 19.
    Tian L, Tan R, Chen Y et al (2016) Epidemiology of Klebsiella pneumoniae bloodstream infections in a teaching hospital: factors related to the carbapenem resistance and patient mortality. Antimicrob Resist Infect Control 5:48CrossRefGoogle Scholar
  20. 20.
    Pau CK, Ma FF, Ip M et al (2015) Characteristics and outcomes of Klebsiella pneumoniae bacteraemia in Hong Kong. Infect Dis (Lond) 47(5):283–288CrossRefGoogle Scholar
  21. 21.
    Man MY, Shum HP, Chan YH et al (2017) Clinical predictors and outcomes of Klebsiella pneumoniae bacteraemia in a regional hospital in Hong Kong. J Hosp Infect 97(1):35–41CrossRefGoogle Scholar
  22. 22.
    Paczosa MK, Mecsas J (2016) Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev 80(3):629–661CrossRefGoogle Scholar
  23. 23.
    Angus DC, van der Poll T (2013) Severe sepsis and septic shock. N Engl J Med 369(9):840–851CrossRefGoogle Scholar
  24. 24.
    Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71(3):413–451CrossRefGoogle Scholar
  25. 25.
    Saha P, Yeoh BS, Olvera RA et al (2017) Bacterial siderophores hijack neutrophil functions. J Immunol 198(11):4293–4303CrossRefGoogle Scholar
  26. 26.
    Holden VI, Breen P, Houle S et al (2016) Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1α stabilization during pneumonia. MBio 7(5):e01397–e01316CrossRefGoogle Scholar
  27. 27.
    Lamont IL, Beare PA, Ochsner U et al (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 99(10):7072–7077CrossRefGoogle Scholar
  28. 28.
    Russo TA, Olson R, Fang CT et al (2018) Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J Clin Microbiol 56(9):e00776–e00718CrossRefGoogle Scholar
  29. 29.
    Tan TY, Ong M, Cheng Y et al (2019) Hypermucoviscosity, rmpA, and aerobactin are associated with community-acquired Klebsiella pneumoniae bacteremic isolates causing liver abscess in Singapore. J Microbiol Immunol Infect 52(1):30–34CrossRefGoogle Scholar
  30. 30.
    Vargas JM, Moreno Mochi MP, Nuñez JM et al (2019) Virulence factors and clinical patterns of multiple-clone hypermucoviscous KPC-2 producing K. pneumoniae. Heliyon 5(6):e01829CrossRefGoogle Scholar
  31. 31.
    Tang HL, Chiang MK, Liou WJ et al (2010) Correlation loci and abscess formation. Eur J Clin Microbiol Infect Dis 29(6):689–698CrossRefGoogle Scholar
  32. 32.
    Gu D, Dong N, Zheng Z et al (2018) A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis 18(1):37–46CrossRefGoogle Scholar
  33. 33.
    Zhan L, Wang S, Guo Y et al (2017) Outbreak by hypermucoviscous Klebsiella pneumoniae ST11 isolates with carbapenem resistance in a tertiary hospital in China. Front Cell Infect Microbiol 7:182Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hiroki Namikawa
    • 1
    • 2
  • Makoto Niki
    • 3
  • Mamiko Niki
    • 4
    • 5
  • Koichi Yamada
    • 1
    • 3
    • 5
  • Kiyotaka Nakaie
    • 1
    • 3
  • Arata Sakiyama
    • 4
  • Ken-Ichi Oinuma
    • 4
    • 5
  • Taishi Tsubouchi
    • 4
    • 5
  • Yoshihiro Tochino
    • 2
  • Yasuhiko Takemoto
    • 2
  • Yukihiro Kaneko
    • 4
    • 5
  • Taichi Shuto
    • 2
  • Hiroshi Kakeya
    • 1
    • 3
    • 5
    Email author
  1. 1.Department of Infection Control Science, Graduate School of MedicineOsaka City UniversityOsakaJapan
  2. 2.Department of Medical Education and General Practice, Graduate School of MedicineOsaka City UniversityOsakaJapan
  3. 3.Department of Infection Control and PreventionOsaka City University HospitalOsakaJapan
  4. 4.Department of Bacteriology, Graduate School of MedicineOsaka City UniversityOsakaJapan
  5. 5.Research Center for Infectious Disease Sciences (RCIDs), Graduate School of MedicineOsaka City UniversityOsakaJapan

Personalised recommendations