Advertisement

Melittin: a venom-derived peptide with promising anti-viral properties

  • Hamed Memariani
  • Mojtaba MemarianiEmail author
  • Hamideh Moravvej
  • Mohammad Shahidi-Dadras
Review

Abstract

Despite tremendous advances in the development of anti-viral therapeutics, viral infections remain a chief culprit accounting for ongoing morbidity and mortality worldwide. Natural products, in particular animal venoms, embody a veritable cornucopia of exotic constituents, suggesting an immensurable source of anti-infective drugs. In this context, melittin, the principal constituent in the venom of the European honeybee Apis mellifera, has been demonstrated to exert anti-cancer, anti-inflammatory, anti-diabetic, anti-infective, and adjuvant properties. To our knowledge, there is no review appertaining to effects of melittin against viruses, prompting us to synopsize experimental investigations on its anti-viral activity throughout the past decades. Accumulating evidence indicates that melittin curbs infectivity of a diverse array of viruses including coxsackievirus, enterovirus, influenza A viruses, human immunodeficiency virus (HIV), herpes simplex virus (HSV), Junín virus (JV), respiratory syncytial virus (RSV), vesicular stomatitis virus (VSV), and tobacco mosaic virus (TMV). However, medication safety, different routes of administrations, and molecular mechanisms behind the anti-viral activity of melittin should be scrutinized in future studies.

Keywords

Venom Bee Melittin Anti-viral activity Drug 

Notes

Author contributions

All authors contributed equally to writing and revision of the manuscript. The authors reviewed and approved the final submitted manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Howard CR, Fletcher NF (2012) Emerging virus diseases: can we ever expect the unexpected? Emerg Microbes Infect 1(12):e46.  https://doi.org/10.1038/emi.2012.47 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Taubenberger JK, Morens DM (2006) 1918 Influenza: the mother of all pandemics. Emerg Infect Dis 12(1):15–22.  https://doi.org/10.3201/eid1201.050979 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    World Health Organization (WHO). HIV/AIDS: data and statistics. https://www.who.int/hiv/data/en/. Accessed 19 March 2019
  4. 4.
    Saxena SK, Mishra N, Saxena R (2009) Advances in antiviral drug discovery and development: part II: advancements in antiviral drug development. Futur Virol 4(3):209–215.  https://doi.org/10.2217/fvl.09.1 CrossRefGoogle Scholar
  5. 5.
    Petersen H, Mostafa A, Tantawy MA, Iqbal AA, Hoffmann D, Tallam A, Selvakumar B, Pessler F, Beer M, Rautenschlein S, Pleschka S (2018) NS Segment of a 1918 Influenza A virus-descendent enhances replication of H1N1pdm09 and virus-induced cellular immune response in mammalian and avian systems. Front Microbiol 9:526.  https://doi.org/10.3389/fmicb.2018.00526 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Memariani H, Shahbazzadeh D, Ranjbar R, Behdani M, Memariani M, Pooshang Bagheri K (2017) Design and characterization of short hybrid antimicrobial peptides from pEM-2, mastoparan-VT1, and mastoparan-B. Chem Biol Drug Des 89(3):327–338.  https://doi.org/10.1111/cbdd.12864 CrossRefPubMedGoogle Scholar
  7. 7.
    Memariani H, Memariani M, Pourmand MR (2018) Venom-derived peptide Mastoparan-1 eradicates planktonic and biofilm-embedded methicillin-resistant Staphylococcus aureus isolates. Microb Pathog 119:72–80.  https://doi.org/10.1016/j.micpath.2018.04.008 CrossRefPubMedGoogle Scholar
  8. 8.
    Andreotti N, Jouirou B, Mouhat S, Mouhat L, Sabatier J (2010) Therapeutic value of peptides from animal venoms. In: Mandler L, Liu HW (eds) Comprehensive natural products II. Elsevier, OxfordGoogle Scholar
  9. 9.
    Pennington MW, Czerwinski A, Norton RS (2018) Peptide therapeutics from venom: current status and potential. Bioorg Med Chem 26(10):2738–2758.  https://doi.org/10.1016/j.bmc.2017.09.029 CrossRefPubMedGoogle Scholar
  10. 10.
    Memariani H, Shahbazzadeh D, Sabatier JM, Memariani M, Karbalaeimahdi A, Bagheri KP (2016) Mechanism of action and in vitro activity of short hybrid antimicrobial peptide PV3 against Pseudomonas aeruginosa. Biochem Biophys Res Commun 479(1):103–108.  https://doi.org/10.1016/j.bbrc.2016.09.045 CrossRefPubMedGoogle Scholar
  11. 11.
    Cushman DW, Ondetti MA (1999) Design of angiotensin converting enzyme inhibitors. Nat Med 5(10):1110–1113.  https://doi.org/10.1038/13423 CrossRefPubMedGoogle Scholar
  12. 12.
    O'Shea JC, Tcheng JE (2002) Eptifibatide: a potent inhibitor of the platelet receptor integrin glycoprotein IIb/IIIa. Expert Opin Pharmacother 3(8):1199–1210.  https://doi.org/10.1517/14656566.3.8.1199 CrossRefPubMedGoogle Scholar
  13. 13.
    Gladwell TD (2002) Bivalirudin: a direct thrombin inhibitor. Clin Ther 24(1):38–58.  https://doi.org/10.1016/S0149-2918(02)85004-4 CrossRefPubMedGoogle Scholar
  14. 14.
    Miljanich GP (2004) Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem 11(23):3029–3040.  https://doi.org/10.2174/0929867043363884 CrossRefPubMedGoogle Scholar
  15. 15.
    Menozzi A, Merlini PA, Ardissino D (2005) Tirofiban in acute coronary syndromes. Expert Rev Cardiovasc Ther 3(2):193–206.  https://doi.org/10.1586/14779072.3.2.193 CrossRefPubMedGoogle Scholar
  16. 16.
    Furman BL (2012) The development of Byetta (exenatide) from the venom of the Gila monster as an anti-diabetic agent. Toxicon 59(4):464–471.  https://doi.org/10.1016/j.toxicon.2010.12.016 CrossRefPubMedGoogle Scholar
  17. 17.
    Robinson SD, Undheim EAB, Ueberheide B, King GF (2017) Venom peptides as therapeutics: advances, challenges and the future of venom-peptide discovery. Expert Rev Proteomics 14(10):931–939.  https://doi.org/10.1080/14789450.2017.1377613 CrossRefPubMedGoogle Scholar
  18. 18.
    Habermann E (1972) Bee and wasp venoms. Science 177(4046):314–322.  https://doi.org/10.1126/science.177.4046.314 CrossRefPubMedGoogle Scholar
  19. 19.
    Dempsey CE (1990) The actions of melittin on membranes. Biochim Biophys Acta 1031(2):143–161.  https://doi.org/10.1016/0304-4157(90)90006-X CrossRefPubMedGoogle Scholar
  20. 20.
    Matsuzaki K, Yoneyama S, Miyajima K (1997) Pore formation and translocation of melittin. Biophys J 73(2):831–838.  https://doi.org/10.1016/S0006-3495(97)78115-3 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Raghuraman H, Chattopadhyay A (2007) Melittin: a membrane-active peptide with diverse functions. Biosci Rep 27(4–5):189–223.  https://doi.org/10.1007/s10540-006-9030-z CrossRefPubMedGoogle Scholar
  22. 22.
    Terwilliger TC, Eisenberg D (1982) The structure of melittin. II Interpretation of the structure. J Biol Chem 257(11):6016–6022PubMedGoogle Scholar
  23. 23.
    Bello J, Bello HR, Granados E (1982) Conformation and aggregation of melittin: dependence on pH and concentration. Biochemistry 21(3):461–465.  https://doi.org/10.1021/bi00532a007 CrossRefPubMedGoogle Scholar
  24. 24.
    Picoli T, Peter CM, Zani JL, Waller SB, Lopes MG, Boesche KN, Vargas GDA, Hubner SO, Fischer G (2017) Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Microb Pathog 112:57–62.  https://doi.org/10.1016/j.micpath.2017.09.046 CrossRefPubMedGoogle Scholar
  25. 25.
    van den Bogaart G, Guzman JV, Mika JT, Poolman B (2008) On the mechanism of pore formation by melittin. J Biol Chem 283(49):33854–33857.  https://doi.org/10.1074/jbc.M805171200 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lee MT, Sun TL, Hung WC, Huang HW (2013) Process of inducing pores in membranes by melittin. Proc Natl Acad Sci U S A 110(35):14243–14248.  https://doi.org/10.1073/pnas.1307010110 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gajski G, Garaj-Vrhovac V (2013) Melittin: a lytic peptide with anticancer properties. Environ Toxicol Pharmacol 36(2):697–705.  https://doi.org/10.1016/j.etap.2013.06.009 CrossRefPubMedGoogle Scholar
  28. 28.
    Lee G, Bae H (2016) Anti-inflammatory applications of melittin, a major component of bee venom: detailed mechanism of action and adverse effects. Molecules 21(5).  https://doi.org/10.3390/molecules21050616 CrossRefGoogle Scholar
  29. 29.
    Hossen S, Gan SH, Khalil I (2017) Melittin, a potential natural toxin of crude bee venom: probable future arsenal in the treatment of diabetes mellitus. J Chem 2017:1–7.  https://doi.org/10.1155/2017/4035626 CrossRefGoogle Scholar
  30. 30.
    Memariani H, Memariani M, Shahidi-Dadras M, Nasiri S, Akhavan MM, Moravvej H (2019) Melittin: from honeybees to superbugs. Appl Microbiol Biotechnol 103(8):3265–3276.  https://doi.org/10.1007/s00253-019-09698-y CrossRefPubMedGoogle Scholar
  31. 31.
    Bramwell VW, Somavarapu S, Outschoorn I, Alpar HO (2003) Adjuvant action of melittin following intranasal immunisation with tetanus and diphtheria toxoids. J Drug Target 11(8–10):525–530.  https://doi.org/10.1080/10611860410001670080 CrossRefPubMedGoogle Scholar
  32. 32.
    Albiol Matanic VC, Castilla V (2004) Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents 23(4):382–389.  https://doi.org/10.1016/j.ijantimicag.2003.07.022 CrossRefPubMedGoogle Scholar
  33. 33.
    Picoli T, Peter CM, Vargas GD, Hübner SO, de Lima M, Fischer G (2018) Antiviral and virucidal potential of melittin and apamin against bovine herpesvirus type 1 and bovine viral diarrhea virus. Pesq Vet Bras 38(4):595–604.  https://doi.org/10.1590/1678-5150-pvb-4758 CrossRefGoogle Scholar
  34. 34.
    Baghian A, Kousoulas KG (1993) Role of the Na+,K+ pump in herpes simplex type 1-induced cell fusion: melittin causes specific reversion of syncytial mutants with the syn1 mutation to syn + (wild-type) phenotype. Virology 196(2):548–556.  https://doi.org/10.1006/viro.1993.1510 CrossRefPubMedGoogle Scholar
  35. 35.
    Yasin B, Pang M, Turner JS, Cho Y, Dinh NN, Waring AJ, Lehrer RI, Wagar EA (2000) Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides. Eur J Clin Microbiol Infect Dis 19(3):187–194.  https://doi.org/10.1007/s100960050457 CrossRefPubMedGoogle Scholar
  36. 36.
    Uddin MB, Lee BH, Nikapitiya C, Kim JH, Kim TH, Lee HC, Kim CG, Lee JS, Kim CJ (2016) Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. J Microbiol 54(12):853–866.  https://doi.org/10.1007/s12275-016-6376-1 CrossRefPubMedGoogle Scholar
  37. 37.
    Falco A, Barrajon-Catalan E, Menendez-Gutierrez MP, Coll J, Micol V, Estepa A (2013) Melittin-loaded immunoliposomes against viral surface proteins, a new approach to antiviral therapy. Antivir Res 97(2):218–221.  https://doi.org/10.1016/j.antiviral.2012.12.004 CrossRefPubMedGoogle Scholar
  38. 38.
    Esser AF, Bartholomew RM, Jensen FC, Muller-Eberhard HJ (1979) Disassembly of viral membranes by complement independent of channel formation. Proc Natl Acad Sci U S A 76(11):5843–5847.  https://doi.org/10.1073/pnas.76.11.5843 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Boone LR, Skalka A (1980) Two species of full-length cDNA are synthesized in high yield by melittin-treated avian retrovirus particles. Proc Natl Acad Sci U S A 77(2):847–851.  https://doi.org/10.1073/pnas.77.2.847 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yong WH, Wyman S, Levy JA (1990) Optimal conditions for synthesizing complementary DNA in the HIV-1 endogenous reverse transcriptase reaction. AIDS 4(3):199–206CrossRefGoogle Scholar
  41. 41.
    Wachinger M, Saermark T, Erfle V (1992) Influence of amphipathic peptides on the HIV-1 production in persistently infected T lymphoma cells. FEBS Lett 309(3):235–241.  https://doi.org/10.1016/0014-5793(92)80780-K CrossRefPubMedGoogle Scholar
  42. 42.
    Wachinger M, Kleinschmidt A, Winder D, von Pechmann N, Ludvigsen A, Neumann M, Holle R, Salmons B, Erfle V, Brack-Werner R (1998) Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol 79(Pt 4):731–740.  https://doi.org/10.1099/0022-1317-79-4-731 CrossRefPubMedGoogle Scholar
  43. 43.
    Hood JL, Jallouk AP, Campbell N, Ratner L, Wickline SA (2013) Cytolytic nanoparticles attenuate HIV-1 infectivity. Antivir Ther 18(1):95–103.  https://doi.org/10.3851/IMP2346 CrossRefPubMedGoogle Scholar
  44. 44.
    Marcos JF, Beachy RN, Houghten RA, Blondelle SE, Perez-Paya E (1995) Inhibition of a plant virus infection by analogs of melittin. Proc Natl Acad Sci U S A 92(26):12466–12469.  https://doi.org/10.1073/pnas.92.26.12466 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Paweska JT (2014) Lujo virus hemorrhagic fever\. In: Ergonul O, Can F, Akova M, Madoff L (eds) Emerging infectious diseases: clinical case studies, 1st edn. Academic Press, Elsevier Inc., London.  https://doi.org/10.1016/B978-0-12-416975-3.00007-8 CrossRefGoogle Scholar
  46. 46.
    King AMQ, Adams MJ, Carstens EB, Lefkowitz E (2012) Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Academic Press, Elsevier Inc., San DiegoGoogle Scholar
  47. 47.
    Hallam SJ, Koma T, Maruyama J, Paessler S (2018) Review of Mammarenavirus biology and replication. Front Microbiol 9:1751.  https://doi.org/10.3389/fmicb.2018.01751 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Moraz ML, Kunz S (2011) Pathogenesis of arenavirus hemorrhagic fevers. Expert Rev Anti-Infect Ther 9(1):49–59.  https://doi.org/10.1586/eri.10.142 CrossRefPubMedGoogle Scholar
  49. 49.
    Gowen BB, Juelich TL, Sefing EJ, Brasel T, Smith JK, Zhang L, Tigabu B, Hill TE, Yun T, Pietzsch C, Furuta Y, Freiberg AN (2013) Favipiravir (T-705) inhibits Junin virus infection and reduces mortality in a guinea pig model of Argentine hemorrhagic fever. PLoS Negl Trop Dis 7(12):e2614.  https://doi.org/10.1371/journal.pntd.0002614 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Enria DA, Briggiler AM, Sanchez Z (2008) Treatment of Argentine hemorrhagic fever. Antivir Res 78(1):132–139.  https://doi.org/10.1016/j.antiviral.2007.10.010 CrossRefPubMedGoogle Scholar
  51. 51.
    Grant A, Seregin A, Huang C, Kolokoltsova O, Brasier A, Peters C, Paessler S (2012) Junin virus pathogenesis and virus replication. Viruses 4(10):2317–2339.  https://doi.org/10.3390/v4102317 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T, Muerhoff S, Pletnev A, Rico-Hesse R, Smith DB, Stapleton JT, Ictv Report C (2017) ICTV virus taxonomy profile: Flaviviridae. J Gen Virol 98(1):2–3.  https://doi.org/10.1099/jgv.0.000672 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Neufeldt CJ, Cortese M, Acosta EG, Bartenschlager R (2018) Rewiring cellular networks by members of the Flaviviridae family. Nat Rev Microbiol 16(3):125–142.  https://doi.org/10.1038/nrmicro.2017.170 CrossRefPubMedGoogle Scholar
  54. 54.
    Scharnböck B, Roch FF, Richter V, Funke C, Firth CL, Obritzhauser W, Baumgartner W, Kasbohrer A, Pinior B (2018) A meta-analysis of bovine viral diarrhoea virus (BVDV) prevalences in the global cattle population. Sci Rep 8(1):14420.  https://doi.org/10.1038/s41598-018-32831-2 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Whitley RJ, Roizman B (2001) Herpes simplex virus infections. Lancet 357(9267):1513–1518.  https://doi.org/10.1016/S0140-6736(00)04638-9 CrossRefPubMedGoogle Scholar
  56. 56.
    Roizman B, Knipe DM, Whitley RJ (2013) Herpes simplex viruses. In: Knipe DM, Howley PM, Cohen JI et al (eds) Fields virology, 6th edn. Lippincott-Williams &Wilkins, PhiladelphiaGoogle Scholar
  57. 57.
    Sharma V, Mobeen F, Prakash T (2016) Comparative genomics of Herpesviridae family to look for potential signatures of human infecting strains. Int J Genomics 2016, 9543274.  https://doi.org/10.1155/2016/9543274 CrossRefGoogle Scholar
  58. 58.
    Morrison LA (2004) The Toll of herpes simplex virus infection. Trends Microbiol 12(8):353–356.  https://doi.org/10.1016/j.tim.2004.06.001 CrossRefPubMedGoogle Scholar
  59. 59.
    Birkmann A, Zimmermann H (2016) HSV antivirals - current and future treatment options. Curr Opin Virol 18:9–13.  https://doi.org/10.1016/j.coviro.2016.01.013 CrossRefPubMedGoogle Scholar
  60. 60.
    Silverman JL, Heldwein EE (2013) Mutations in the cytoplasmic tail of herpes simplex virus 1 gH reduce the fusogenicity of gB in transfected cells. J Virol 87(18):10139–10147.  https://doi.org/10.1128/JVI.01760-13 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Baghian A, Jaynes J, Enright F, Kousoulas KG (1997) An amphipathic alpha-helical synthetic peptide analogue of melittin inhibits herpes simplex virus-1 (HSV-1)-induced cell fusion and virus spread. Peptides 18(2):177–183.  https://doi.org/10.1016/S0196-9781(96)00290-2 CrossRefPubMedGoogle Scholar
  62. 62.
    Kousoulas KG, Bzik DJ, Person S (1983) Effect of the ionophore monensin on herpes simplex virus type 1-induced cell fusion, glycoprotein synthesis, and virion infectivity. Intervirology 20(1):56–60.  https://doi.org/10.1159/000149375 CrossRefPubMedGoogle Scholar
  63. 63.
    Cuppoletti J, Abbott AJ (1990) Interaction of melittin with the (Na+ + K+) ATPase: evidence for a melittin-induced conformational change. Arch Biochem Biophys 283(2):249–257.  https://doi.org/10.1016/0003-9861(90)90639-G CrossRefPubMedGoogle Scholar
  64. 64.
    Perez DR, Angel M, Gonzalez-Reiche AS, Santos J, Obadan A, Martinez-Sobrido L (2017) Plasmid-based reverse genetics of influenza A virus. In: Perez DR (ed) Reverse genetics of RNA: methods and protocols, methods in molecular biology, vol 1602, 1st edn. Humana Press Inc, New York, pp 251–273.  https://doi.org/10.1007/978-1-4939-6964-7 CrossRefGoogle Scholar
  65. 65.
    Maclachlan NJ, Dubovi EJ (2017) Fenner’s veterinary virology, 5th edn. Academic Press, Elsevier Inc., CambridgeGoogle Scholar
  66. 66.
    World Health Organization (WHO). Influenza: Burden of disease. https://www.who.int/influenza/surveillance_monitoring/bod/en/. Accessed 15 Dec 2018
  67. 67.
    van Doorn HR, Yu H (2013) Viral respiratory infections. In: Magill AJ, Ryan ET, Hill DR, Solomon T (eds) Hunter's tropical medicine and emerging infectious diseases, 9th edn. Saunders, New York.  https://doi.org/10.1016/B978-1-4160-4390-4.00029-1 CrossRefGoogle Scholar
  68. 68.
    Li Q, Zhao Z, Zhou D, Chen Y, Hong W, Cao L, Yang J, Zhang Y, Shi W, Cao Z, Wu Y, Yan H, Li W (2011) Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides 32(7):1518–1525.  https://doi.org/10.1016/j.peptides.2011.05.015 CrossRefPubMedGoogle Scholar
  69. 69.
    Zell R (2018) Picornaviridae-the ever-growing virus family. Arch Virol 163(2):299–317.  https://doi.org/10.1007/s00705-017-3614-8 CrossRefPubMedGoogle Scholar
  70. 70.
    Cox JA, Hiscox JA, Solomon T, Ooi MH, Ng LFP (2017) Immunopathogenesis and virus-host interactions of Enterovirus 71 in patients with hand, foot and mouth disease. Front Microbiol 8:2249.  https://doi.org/10.3389/fmicb.2017.02249 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Afonso CL, Amarasinghe GK, Banyai K, Bao Y, Basler CF, Bavari S, Bejerman N, Blasdell KR, Briand FX, Briese T, Bukreyev A, Calisher CH, Chandran K, Cheng J, Clawson AN, Collins PL, Dietzgen RG, Dolnik O, Domier LL, Durrwald R, Dye JM, Easton AJ, Ebihara H, Farkas SL, Freitas-Astua J, Formenty P, Fouchier RA, Fu Y, Ghedin E, Goodin MM, Hewson R, Horie M, Hyndman TH, Jiang D, Kitajima EW, Kobinger GP, Kondo H, Kurath G, Lamb RA, Lenardon S, Leroy EM, Li CX, Lin XD, Liu L, Longdon B, Marton S, Maisner A, Muhlberger E, Netesov SV, Nowotny N, Patterson JL, Payne SL, Paweska JT, Randall RE, Rima BK, Rota P, Rubbenstroth D, Schwemmle M, Shi M, Smither SJ, Stenglein MD, Stone DM, Takada A, Terregino C, Tesh RB, Tian JH, Tomonaga K, Tordo N, Towner JS, Vasilakis N, Verbeek M, Volchkov VE, Wahl-Jensen V, Walsh JA, Walker PJ, Wang D, Wang LF, Wetzel T, Whitfield AE, Xie JT, Yuen KY, Zhang YZ, Kuhn JH (2016) Taxonomy of the order Mononegavirales: update 2016. Arch Virol 161(8):2351–2360.  https://doi.org/10.1007/s00705-016-2880-1 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Walsh EE (2017) Respiratory syncytial virus infection: an illness for all ages. Clin Chest Med 38(1):29–36.  https://doi.org/10.1016/j.ccm.2016.11.010 CrossRefPubMedGoogle Scholar
  73. 73.
    Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, Singleton RJ, O'Brien KL, Roca A, Wright PF, Bruce N, Chandran A, Theodoratou E, Sutanto A, Sedyaningsih ER, Ngama M, Munywoki PK, Kartasasmita C, Simoes EA, Rudan I, Weber MW, Campbell H (2010) Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 375(9725):1545–1555.  https://doi.org/10.1016/S0140-6736(10)60206-1 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kestler M, Munoz P, Mateos M, Adrados D, Bouza E (2018) Respiratory syncytial virus burden among adults during flu season: an underestimated pathology. J Hosp Infect 100(4):463–468.  https://doi.org/10.1016/j.jhin.2018.03.034 CrossRefPubMedGoogle Scholar
  75. 75.
    Turner TL, Kopp BT, Paul G, Landgrave LC, Hayes D Jr, Thompson R (2014) Respiratory syncytial virus: current and emerging treatment options. Clinicoecon Outcomes Res 6:217–225.  https://doi.org/10.2147/CEOR.S60710 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Hobson JJ, Al-Khouja A, Curley P, Meyers D, Flexner C, Siccardi M, Owen A, Meyers CF, Rannard SP (2019) Semi-solid prodrug nanoparticles for long-acting delivery of water-soluble antiretroviral drugs within combination HIV therapies. Nat Commun 10(1):1413.  https://doi.org/10.1038/s41467-019-09354-z CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Sarzotti-Kelsoe M, Bailer RT, Turk E, Lin CL, Bilska M, Greene KM, Gao H, Todd CA, Ozaki DA, Seaman MS, Mascola JR, Montefiori DC (2014) Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J Immunol Methods 409:131–146.  https://doi.org/10.1016/j.jim.2013.11.022 CrossRefPubMedGoogle Scholar
  78. 78.
    Lichty BD, Power AT, Stojdl DF, Bell JC (2004) Vesicular stomatitis virus: re-inventing the bullet. Trends Mol Med 10(5):210–216.  https://doi.org/10.1016/j.molmed.2004.03.003 CrossRefPubMedGoogle Scholar
  79. 79.
    Strauss EG, Strauss JH (2008) Viruses and human disease, 2nd edn. Academic Press, San DiegoGoogle Scholar
  80. 80.
    Paszko E, Senge MO (2012) Immunoliposomes. Curr Med Chem 19(31):5239–5277.  https://doi.org/10.2174/092986712803833362 CrossRefPubMedGoogle Scholar
  81. 81.
    Adams MJ, Adkins S, Bragard C, Gilmer D, Li D, MacFarlane SA, Wong SM, Melcher U, Ratti C, Ryu KH, Ictv Report C (2017) ICTV virus taxonomy profile: Virgaviridae. J Gen Virol 98(8):1999–2000.  https://doi.org/10.1099/jgv.0.000884 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Yamaya J, Yoshioka M, Meshi T, Okada Y, Ohno T (1988) Expression of tobacco mosaic virus RNA in transgenic plants. Mol Gen Genet 211(3):520–525.  https://doi.org/10.1007/BF00425710 CrossRefPubMedGoogle Scholar
  83. 83.
    Michálek P, Zítka O, Guráň R, Milosavljevič V, Kopel P, Adam V, Hegar Z (2015) Effect of melittin on influenza-infected chicken embryos. MENDELNET 475–479Google Scholar
  84. 84.
    Hartmann AD, Wilhelm N, Erfle V, Hartmann K (2016) Clinical efficacy of melittin in the treatment of cats infected with the feline immunodeficiency virus. Tierarztl Prax Ausg K Kleintiere Heimtiere 44(6):417–423.  https://doi.org/10.15654/TPK-150890 CrossRefPubMedGoogle Scholar
  85. 85.
    Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals (Basel) 6(12):1543–1575.  https://doi.org/10.3390/ph6121543 CrossRefGoogle Scholar
  86. 86.
    Lauster D, Glanz M, Bardua M, Ludwig K, Hellmund M, Hoffmann U, Hamann A, Bottcher C, Haag R, Hackenberger CPR, Herrmann A (2017) Multivalent peptide-nanoparticle conjugates for influenza-virus inhibition. Angew Chem Int Ed Engl 56(21):5931–5936.  https://doi.org/10.1002/anie.201702005 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Soman NR, Baldwin SL, Hu G, Marsh JN, Lanza GM, Heuser JE, Arbeit JM, Wickline SA, Schlesinger PH (2009) Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J Clin Invest 119(9):2830–2842.  https://doi.org/10.1172/JCI38842 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Rajabnejad SH, Mokhtarzadeh A, Abnous K, Taghdisi SM, Ramezani M, Razavi BM (2018) Targeted delivery of melittin to cancer cells by AS1411 anti-nucleolin aptamer. Drug Dev Ind Pharm 44(6):982–987.  https://doi.org/10.1080/03639045.2018.1427760 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Skin Research CenterShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations