Advertisement

Duodenoscope-associated infections: a review

  • Gheorghe G. Balan
  • Catalin Victor SfartiEmail author
  • Stefan Andrei Chiriac
  • Carol Stanciu
  • Anca Trifan
Review
  • 243 Downloads

Abstract

Flexible digestive endoscopes are used for the management of various conditions with hundreds of thousands of therapeutic procedures performed worldwide each year. Duodenoscopes are indispensable tools for the delivery of minimally invasive vital care of numerous pancreaticobiliary disorders. Despite the fact that nosocomial infections after endoscopic retrograde cholangiopancreatography (ERCP) have always been among the most frequently cited postprocedural complications, recent emergence of duodenoscope-transmitted multiple drug-resistant bacterial infections has led to intense research and debate yet with no clearly delineated solution. Duodenoscope-transmitted nosocomial infections have become one of the most visible topics in the recent literature. Hundreds of high-impact articles have therefore been published in the last decade. This review article discusses how such infections were seen in the past and what is the current situation in both research and practice and thus tries to solve some of the unanswered questions for the future. With the persistence of nosocomial infections despite strict adherence to both manufacturer-issued reprocessing protocols and international guidelines and regulations, an urgent and proper microbiologically driven common action is needed for controlling such nosocomial worldwide threat.

Keywords

Duodenoscope Nosocomial infections Biofilm Reprocessing Endoscopic retrograde cholangiopancreatography 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kimmey MB, Burnett DA, Carr-Locke DL et al (1993) Transmission of infection by gastrointestinal endoscopy. Gastrointest Endosc 39(6):885–888.  https://doi.org/10.1016/S0016-5107(93)70316-8 CrossRefGoogle Scholar
  2. 2.
    Higa JT, Choe J, Tombs D, Gluck M, Ross AS (2018) Optimizing duodenoscope reprocessing: rigorous assessment of a culture and quarantine protocol. Gastrointest Endosc 88(2):223–229.  https://doi.org/10.1016/j.gie.2018.02.015 CrossRefPubMedGoogle Scholar
  3. 3.
    Wang P, Xu T, Ngamruengphong S et al (2018) Rates of infection after colonoscopy and osophagogastroduodenoscopy in ambulatory surgery centers in the USA. Gut 67(9):1637–1645CrossRefGoogle Scholar
  4. 4.
    Verfaille CJ, Bruno MJ, Voorintholt AF et al (2015) Withdrawal of a novel-design duodenoscope ends outbreak of a VIM-2-producing Pseudomonas aeruginosa. Endoscopy 47(06):493–502CrossRefGoogle Scholar
  5. 5.
    Beilenhoff U, Biering H, Blum R et al (2018) Reprocessing of flexible endoscopes and endoscopic accessories used in gastrointestinal endoscopy: position statement of the European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastroenterology Nurses and Associates (ESGENA)–update 2018. Endoscopy 50(12):1205–1234CrossRefGoogle Scholar
  6. 6.
    Calderwood AH, Day LW, Muthusamy VR et al (2018) ASGE guideline for infection control during GI endoscopy. Gastrointest Endosc 87(5):1167–1179.  https://doi.org/10.1016/j.gie.2017.12.009 CrossRefPubMedGoogle Scholar
  7. 7.
    US Food and Drug Administration (FDA) (2015a) Design of endoscopic retrograde cholangiopancreatography (ERCP) duodenoscopes may impede effective cleaning: FDA safety communication. www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm434871.htm. Accessed Aug 2017
  8. 8.
    Ross AS, Baliga C, Verma P, Duchin J, Gluck M (2015) A quarantine process for the resolution of duodenoscope-assisted transmission of multidrug-resistant Escherichia coli. Gastrointest Endosc 82:477–483.  https://doi.org/10.1016/j.gie.2015.04.036 CrossRefPubMedGoogle Scholar
  9. 9.
    Nelson DB, Jarvis WR, Rutala WA, Foxx-Orenstein AE, Isenberg G, Dash GP, Alvarado CJ, Ball M, Griffin-Sobel J, Petersen C, Ball KA (2003) Multi-society guideline for reprocessing flexible gastrointestinal endoscopes. Infect Control Hosp Epidemiol 24(7):532–537.  https://doi.org/10.1086/502237 CrossRefPubMedGoogle Scholar
  10. 10.
    Stanciu C, Sfarti C, Chiriac S, Balan GG, Trifan A (2018) A half century of endoscopic retrograde colangiopancreatography: reflections of the past, present and future. J Gastrointestin Liver Dis 27(4):357–360.  https://doi.org/10.15403/jgld.2014.1121.274.aha CrossRefPubMedGoogle Scholar
  11. 11.
    Higa JT, Gluck M, Ross AS (2019) Duodenoscope reprocessing. In: Ercp, 3rd edn. Elsevier, Amsterdam, pp 44–48CrossRefGoogle Scholar
  12. 12.
    Yachimski SP, Ross A (2017) The future of endoscopic retrograde cholangiopancreatography. Gastroenterology 153(2):338–344.  https://doi.org/10.1053/j.gastro.2017.06.015 CrossRefPubMedGoogle Scholar
  13. 13.
    Fumex F, Coumaros D, Napoleon B et al (2006) Similar performance but higher cholecystitis rate with covered biliary stents: results from a prospective multicenter evaluation. Endoscopy 38(8):787–792CrossRefGoogle Scholar
  14. 14.
    Andriulli A, Loperfido S, Napolitano G, Niro G, Valvano MR, Spirito F, Pilotto A, Forlano R (2007) Incidence rates of post-ERCP complications: a systematic survey of prospective studies. Am J Gastroenterol 102(8):1781CrossRefGoogle Scholar
  15. 15.
    Allen JI, Allen MO, Olson MM et al (1987) Pseudomonas infection of the biliary system resulting from use of a contaminated endoscope. Gastroenterology 92(3):759–763.  https://doi.org/10.1016/0016-5085(87)90029-1 CrossRefPubMedGoogle Scholar
  16. 16.
    Keswani RN, Soper NJ (2005) Endoscopes and the “Superbug” outbreak. JAMA Surg 150(9):831–832.  https://doi.org/10.1001/jamasurg.2015.1255 CrossRefGoogle Scholar
  17. 17.
    Epstein L, Hunter JC, Arwady MA et al (2014) New Delhi metallo-beta-lactamase-producing carbapenem-resistant Escherichia coli associated with exposure to duodenoscopes. JAMA 312:1447–1455.  https://doi.org/10.1001/jama.2014.12720 CrossRefPubMedGoogle Scholar
  18. 18.
    Rubin ZA, Kim S, Thaker AM, Muthusamy VR (2018) Safely reprocessing duodenoscopes: current evidence and future directions. Lancet Gastroenterol Hepatol 3(7):499–508.  https://doi.org/10.1016/S2468-1253(18)30122-5 CrossRefPubMedGoogle Scholar
  19. 19.
    Rutala WA, Weber DJ (2016) Outbreaks of carbapenem-resistant Enterobacteriaceae infections associated with duodenoscopes: what can we do to prevent infections? Am J Infect Control 44(5):e47–e51.  https://doi.org/10.1016/j.ajic.2015.10.037 CrossRefPubMedGoogle Scholar
  20. 20.
    Centers for Disease Control and Prevention (CDC) (2015) Interim duodenoscope surveillance protocol. www.cdc.gov/hai/organisms/cre/cre-duodenoscope-sur veillance-protocol.html. Accessed Aug 2015
  21. 21.
    The Lancet Gastroenterology & Hepatology (2018) Scoping the problem: endoscopy-associated infections. Lancet Gastroenterol Hepatol 3(7):445.  https://doi.org/10.1016/S2468-1253(18)30168-7 CrossRefGoogle Scholar
  22. 22.
    US Food and Drug Administration (FDA) (2015b) Supplemental measures to enhance reprocessing: FDA safety communication. www.fda.gov/MedicalDevices/safety/AlertsandNotices/ucm454766.htm. Accessed Aug 2017
  23. 23.
    Tokar JL, Allen JI, Kochman ML (2015) Getting to zero: reducing the risk for duodenoscope-related infections. Ann Intern Med 163(11):873–874.  https://doi.org/10.7326/M15-1719 CrossRefPubMedGoogle Scholar
  24. 24.
    Reiner S (2008) Investigation of a cluster of genomically identical Pseudomonas aeruginosa blood isolates following endoscopic retrograde cholangiopancreatography in a gastroenterology laboratory: 2: 00-2: 15 pm Publication Number 202. Am J Infect Control 1(36):5Google Scholar
  25. 25.
    Kovaleva J, Meessen NE, Peters FT, Been MH, Arends JP, Borgers RP, Degener JE (2009) Is bacteriologic surveillance in endoscope reprocessing stringent enough? Endoscopy 41(10):913–916CrossRefGoogle Scholar
  26. 26.
    Alrabaa SF, Nguyen P, Sanderson R, Baluch A, Sandin RL, Kelker D, Karlapalem C, Thompson P, Sams K, Martin S, Montero J (2013) Early identification and control of carbapenemase-producing Klebsiella pneumoniae, originating from contaminated endoscopic equipment. Am J Infect Control 41(6):562–564CrossRefGoogle Scholar
  27. 27.
    Sanderson R, Braithwaite L, Ball L, Ragan P, Eisenstein L (2010) An outbreak of carbapenemresistant Klebsiella pneumoniae infections associated with endoscopic retrograde cholangiopancreatography (ERCP) procedures at a hospital. Am J Infect Control 38:e141CrossRefGoogle Scholar
  28. 28.
    Carbonne A, Thiolet JM, Fournier S, Fortineau N, Kassis-Chikhani N, Boytchev I, Aggoune M, Seguier JC, Senechal H, Tavolacci MP, Coignard B (2010) Control of a multi-hospital outbreak of KPC-producing Klebsiella pneumoniae type 2 in France, September to October 2009. Eurosurveillance 15(48):19734CrossRefGoogle Scholar
  29. 29.
    Cristina ML, Spagnolo AM, Ottria G, Sartini M, Orlando P, Perdelli F, Group GH (2011) Spread of multidrug carbapenem-resistant Acinetobacter baumannii in different wards of an Italian hospital. Am J Infect Control 39(9):790–794CrossRefGoogle Scholar
  30. 30.
    Aumeran C, Poincloux L, Souweine B, Robin F, Laurichesse H, Baud O, Bommelaer G, Traoré O (2010) Multidrug-resistant Klebsiella pneumoniae outbreak after endoscopic retrograde cholangiopancreatography. Endoscopy 42(11):895–899CrossRefGoogle Scholar
  31. 31.
    Naas T, Cuzon G, Babics A, Fortineau N, Boytchev I, Gayral F, Nordmann P (2010) Endoscopy-associated transmission of carbapenem-resistant Klebsiella pneumoniae producing KPC-2 β-lactamase. J Antimicrob Chemother 65(6):1305–1306CrossRefGoogle Scholar
  32. 32.
    Espasa-Soley M, Fernandez I, Oteo J, Sanchez-Fresquet X, Falgueras L, Vindel A, Capilla S, Piriz M, Sanfeliu I, Navarro G, Campos J (2012) A nosocomial outbreak of a carbapenem-resistantKlebsiella pneumoniaeST-663 producing OXA-48 and CTX-M-15 related to a duodenoscope contamination. Clin Microbiol Infect 18Google Scholar
  33. 33.
    Marsh JW, Krauland MG, Nelson JS, Schlackman JL, Brooks AM, Pasculle AW, Shutt KA, Doi Y, Querry AM, Muto CA, Harrison LH (2015) Genomic epidemiology of an endoscope-associated outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae. PLoS One 10(12):e0144310CrossRefGoogle Scholar
  34. 34.
    McCool S, Querry A, Muto C (2014) High level disinfection failure in gastrointestinal scopes with elevator channels—is it time to switch to ethylene oxide (ETO) sterilization? ID Week. Philadelphia, PAGoogle Scholar
  35. 35.
    Wendorf KA, Kay M, Baliga C, Weissman SJ, Gluck M, Verma P, D’Angeli M, Swoveland J, Kang MG, Eckmann K, Ross AS (2015) Endoscopic retrograde cholangiopancreatography–associated ampC Escherichia coli outbreak. Infect Control Hosp Epidemiol 36(6):634–642CrossRefGoogle Scholar
  36. 36.
    Kola A, Piening B, Pape UF, Veltzke-Schlieker W, Kaase M, Geffers C, Wiedenmann B, Gastmeier P (2015) An outbreak of carbapenem-resistant OXA-48–producing Klebsiella pneumonia associated to duodenoscopy. Antimicrob Resist Infect Control 4(1):8CrossRefGoogle Scholar
  37. 37.
    Smith ZL, Oh YS, Saeian K, Edmiston CE, Khan AH, Massey BT, Dua KS (2015) Transmission of carbapenem-resistant Enterobacteriaceae during ERCP: time to revisit the current reprocessing guidelines. Gastrointest Endosc 81(4):1041–1045CrossRefGoogle Scholar
  38. 38.
    Du M, Suo J, Liu B, Xing Y, Chen L, Liu Y (2017) Post-ERCP infection and its epidemiological and clinical characteristics in a large Chinese tertiary hospital: a 4-year surveillance study. Antimicrob Resist Infect Control 6(1):131CrossRefGoogle Scholar
  39. 39.
    Ross J (2017) Electronic and microbiological detection, investigation, and surveillance for potential hospital-acquired device associated infections at ERCP. InOpen Forum Infect Dis 4:S174CrossRefGoogle Scholar
  40. 40.
    Coffey K, Shenoy ES, Platt MY, Zhao X, Li N, Pecora N, Allard M, Rosenberg E, Bry L, Hooper D (2017) Endoscopic retrograde cholangiopancreatography associated with ceftriaxone-resistant Escherichia coli bloodstream infections: looking for hay in a haystack. InOpen Forum Infect Dis 4(1):S173–S174CrossRefGoogle Scholar
  41. 41.
    Humphries RM, Yang S, Kim S, Muthusamy VR, Russell D, Trout AM, Zaroda T, Cheng QJ, Aldrovandi G, Uslan DZ, Hemarajata P (2017) Duodenoscope-related outbreak of a carbapenem-resistant Klebsiella pneumoniae identified using advanced molecular diagnostics. Clin Infect Dis 65(7):1159–1166CrossRefGoogle Scholar
  42. 42.
    Kim S, Russell D, Mohamadnejad M, Makker J, Sedarat A, Watson RR, Yang S, Hemarajata P, Humphries R, Rubin Z, Muthusamy VR (2016) Risk factors associated with the transmission of carbapenem-resistant Enterobacteriaceae via contaminated duodenoscopes. Gastrointest Endosc 83(6):1121–1129CrossRefGoogle Scholar
  43. 43.
    Qiu L, Zhou Z, Liu Q, Ni Y, Zhao F, Cheng H (2015) Investigating the failure of repeated standard cleaning and disinfection of a Pseudomonas aeruginosa–infected pancreatic and biliary endoscope. Am J Infect Control 43(8):e43–e46CrossRefGoogle Scholar
  44. 44.
    Bourigault C, Le Gallou F, Bodet N, Musquer N, Juvin ME, Corvec S, Ferronnière N, Wiesel S, Gournay J, Birgand G, Le Rhun M (2018) Duodenoscopy: an amplifier of cross-transmission during a carbapenemase-producing Enterobacteriaceae outbreak in a gastroenterology pathway. J Hosp Infect 99(4):422–426CrossRefGoogle Scholar
  45. 45.
    Robertson P, Smith A, Anderson M, Stewart J, Hamilton K, McNamee S, Curran ET (2017) Transmission of Salmonella enteritidis after endoscopic retrograde cholangiopancreatography because of inadequate endoscope decontamination. Am J Infect Control 45(4):440–442CrossRefGoogle Scholar
  46. 46.
    Akinbobola AB, Sherry L, Mckay WG, Ramage G, Williams C (2017) Tolerance of Pseudomonas aeruginosa in in-vitro biofilms to high-level peracetic acid disinfection. J Hosp Infect 97(2):162–168.  https://doi.org/10.1016/j.jhin.2017.06.024 CrossRefPubMedGoogle Scholar
  47. 47.
    Bridier A, Dubois-Brissonnet F, Greub G, Thomas V, Briandet R (2011) Dynamics of the action of biocides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 55(6):2648–2654.  https://doi.org/10.1128/AAC.01760-10 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Jawad A, Heritage J, Snelling AM, Gascoyne-Binzi DM, Hawkey PM (1996) Influence of relative humidity and suspending menstrua of survival of Acinetobacter spp. on dry surfaces. J Clin Microbiol 34(12):2881–2887PubMedPubMedCentralGoogle Scholar
  49. 49.
    Williams AP, Avery LM, Kilham K, Jones DL (2005) Persistence of Escherichia coli O157 on farm surfaces under different environmental conditions. J Appl Microbiol 98(5):1075–1083.  https://doi.org/10.1111/j.1365-2672.2004.02530.x CrossRefPubMedGoogle Scholar
  50. 50.
    Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6(130).  https://doi.org/10.1186/1471-2334-6-130
  51. 51.
    Neely AN (2000) A survey of gram-negative bacteria survival on hospital fabrics and plastics. J Burn Care Res 21(6):523–527.  https://doi.org/10.1097/00004630-200021060-00009 CrossRefGoogle Scholar
  52. 52.
    Chhaya R, Bhatwadekar K (2015) Microbial bio-film and unpredictable trouble on medical devices. Int J Appl Basic Med Res 5(3):83–93Google Scholar
  53. 53.
    Balsamo AC, Graziano KU, Schneider RP, Antunes Junior M, Lacerda RA (2012) Removing biofilm from endoscope: evaluation of disinfection methods currently used. Rev Esc Enferm USP 46:91–98.  https://doi.org/10.1590/S0080-62342012000700014 CrossRefPubMedGoogle Scholar
  54. 54.
    Otter JA, Vickery K, Walker JT et al (2015) Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection. J Hosp Infect 89(1):16–27.  https://doi.org/10.1016/j.jhin.2014.09.008 CrossRefPubMedGoogle Scholar
  55. 55.
    Chino T, Nukui Y, Morishita Y, Moriya K (2017) Morphological bactericidal fast-acting effects of peracetic acid, a high-level disinfectant, against Staphylococcus aureus and Pseudomonas aeruginosa biofilms in tubing. Antimicrob Resist Infect Control 6(1):122.  https://doi.org/10.1186/s13756-017-0281-1 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kovaleva J, Degener JE, Van der Mei HC (2010) Mimicking disinfection and drying of biofilms in contaminated endoscopes. J Hosp Infect 76(4):345–350.  https://doi.org/10.1016/j.jhin.2010.07.008 CrossRefPubMedGoogle Scholar
  57. 57.
    Kovaleva J (2017) Endoscope drying and its pitfalls. J Hosp Infect 97(4):319–328.  https://doi.org/10.1016/j.jhin.2017.07.012 CrossRefPubMedGoogle Scholar
  58. 58.
    Ren-Pei W, Hui-Jun X, Ke Q, Dong W, Xing N, Zhao-Shen L (2014) Correlation between the growth of bacterial biofilm in flexible endoscopes and endoscope reprocessing methods. Am J Infect Control 42(11):1203–1206.  https://doi.org/10.1016/j.ajic.2014.07.029 CrossRefPubMedGoogle Scholar
  59. 59.
    Brock AS, Steed LL, Freeman J, Garry B, Malpas P, Cotton P (2015) Endoscope storage time: assessment of microbial colonization up to 21 days after reprocessing. Gastrointest Endosc 81(5):1150–1154.  https://doi.org/10.1016/j.gie.2014.09.053 CrossRefPubMedGoogle Scholar
  60. 60.
    Singh H, Duerksen DR, Schultz G, Reidy C, DeGagne P, Olson N, Nugent Z, Bernard KA, Alfa MJ (2018) Impact of cleaning monitoring combined with channel purge storage on elimination of Escherichia coli and environmental bacteria from duodenoscopes. Gastrointest Endosc 88(2):292–302.  https://doi.org/10.1016/j.gie.2018.02.018 CrossRefPubMedGoogle Scholar
  61. 61.
    da Costa Luciano C, Olson N, DeGagne P, Franca R, Tipple AFV, Alfa M (2016) A new buildup biofilm model that mimics accumulation of material in flexible endoscope channels. J Microbiol Methods 127:224–229.  https://doi.org/10.1016/j.mimet.2016.06.022 CrossRefPubMedGoogle Scholar
  62. 62.
    Chapman CG, Siddiqui UD, Manzano M, Konda VJ, Murillo C, Landon EM, Waxman I (2017) Risk of infection transmission in curvilinear array echoendoscopes: results of a prospective reprocessing and culture registry. Gastrointest Endosc 85(2):390–397.  https://doi.org/10.1016/j.gie.2016.07.049 CrossRefPubMedGoogle Scholar
  63. 63.
    Naryzhny I, Silas D, Chi K (2016) Impact of ethylene oxide gas sterilization of duodenoscopes after a carbapenem-resistant Enterobacteriaceae outbreak. Gastrointest Endosc 84(2):259–262.  https://doi.org/10.1016/j.gie.2016.01.055 CrossRefPubMedGoogle Scholar
  64. 64.
    Thaker AM, Kim S, Sedarat A, Watson RR, Muthusamy VR (2018) Inspection of endoscope instrument channels after reprocessing using a prototype borescope. Gastrointest Endosc 88(4):612–619.  https://doi.org/10.1016/j.gie.2018.04.2366 CrossRefPubMedGoogle Scholar
  65. 65.
    Hervé RC, Keevil CW (2016) Persistent residual contamination in endoscope channels; a fluorescence epimicroscopy study. Endoscopy 48(07):609–616CrossRefGoogle Scholar
  66. 66.
    Rauwers AW, Voor AF, Buijs JG, de Groot W, Hansen BE, Bruno MJ, Vos MC (2018) High prevalence rate of digestive tract bacteria in duodenoscopes: a nationwide study. Gut 67(9):1637–1645.  https://doi.org/10.1136/gutjnl-2017-315082 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Azimirad M, Alebouyeh M, Sadeghi A, Khodamoradi E, Aghdaei HA, Mohammad Alizadeh AH, Zali MR (2019) Bioburden and transmission of pathogenic bacteria through elevator channel during endoscopic retrograde cholangiopancreatography: application of multiple-locus variable-number tandem-repeat analysis for characterization of clonal strains. Expert Rev Med Devices 16(5).  https://doi.org/10.1080/17434440.2019.1604215 CrossRefGoogle Scholar
  68. 68.
    Spaulding EH (1968) Chemical disinfection of medical and surgical materials. In: Lawrence C, Block SS (eds) Disinfection, sterilization, and prezervation. Lea & Febiger, Philadelphia, pp 517–531Google Scholar
  69. 69.
    Almario CV, May FP, Shaheen NJ, Murthy R, Gupta K, Jamil LH, Lo SK, Spiegel BM (2015) Cost utility of competing strategies to prevent endoscopic transmission of carbapenem-resistant enterobacteriaceae. Am J Gastroenterol 110(12):1666CrossRefGoogle Scholar
  70. 70.
    Snyder GM, Wright SB, Smithey A et al (2017) Randomized comparison of 3 high-level disinfection and sterilization procedures for duodenoscopes. Gastroenterology 153(4):1018–1025.  https://doi.org/10.1053/j.gastro.2017.06.052 CrossRefPubMedGoogle Scholar
  71. 71.
    US Food and Drug Administration (FDA) (2015c) Brief summary of the gastroenterology and urology devices panel meeting, May 14–15. www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Medicaldevices/MedicalDevicesAdvisoryCommittee/gastroenterology-UrologyDevicesPanel/UCM447407.pdf. Accessed Aug 2017
  72. 72.
    Alfa MJ, Fatima I, Olson N (2013) Validation of adenosine triphosphate to audit manual cleaning of flexible endoscope channels. Am J Infect Control 41(3):245–248.  https://doi.org/10.1016/j.ajic.2012.03.018 CrossRefPubMedGoogle Scholar
  73. 73.
    Olafsdottir LB, Wright SB, Smithey A, Heroux R, Hirsch EB, Chen A, Lane B, Sawhney MS, Snyder GM (2017) Adenosine triphosphate quantification correlates poorly with microbial contamination of duodenoscopes. Infect Control Hosp Epidemiol 38(6):678–684.  https://doi.org/10.1017/ice.2017.58 CrossRefPubMedGoogle Scholar
  74. 74.
    Barakat MT, Girotra M, Huang RJ, Banerjee S (2018) Scoping the scope: endoscopic evaluation of endoscope working channels with a new high-resolution inspection endoscope (with video). Gastrointest Endosc 87(4):601–611.  https://doi.org/10.1016/j.gie.2018.01.018 CrossRefGoogle Scholar
  75. 75.
    Mager R, Kurosch M, Höfner T, Frees S, Haferkamp A, Neisius A (2018) Clinical outcomes and costs of reusable and single-use flexible ureterorenoscopes: a prospective cohort study. Urolithiasis 46(6):587–593.  https://doi.org/10.1007/s00240-018-1042-1 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Grigore T. PopaUniversity of Medicine and Pharmacy of IașiIașiRomania
  2. 2.Institute of Gastroenterology and HepatologySt. Spiridon Emergency Hospital of IașiIașiRomania

Personalised recommendations