Advertisement

Emergence of two novel sequence types (3366 and 3367) NDM-1- and OXA-48-co-producing K. pneumoniae in Italy

  • Floriana Gona
  • Dafne Bongiorno
  • Ausilia Aprile
  • Erika Corazza
  • Betta Pasqua
  • Maria Grazia Scuderi
  • Matteo Chiacchiaretta
  • Daniela Maria Cirillo
  • Stefania Stefani
  • Maria Lina MezzatestaEmail author
Original Article

Abstract

The aim of this study was to analyze the alarming spread of NDM-1- and OXA-48-co-producing Klebsiella pneumoniae clinical isolates, collected between October 2016 and January 2018 in a neonatal intensive care unit of the University Hospital, Catania, Italy, through whole genome sequencing. All confirmed carbapenem-resistant K. pneumoniae (CRKp) isolates were characterized pheno- and geno-typically, as well as by whole genome sequencing (WGS). A total of 13 CRKp isolates were identified from 13 patients. Pulsed-field gel electrophoresis (PFGE) was performed, and the multilocus sequence typing (MLST) scheme used was based on the gene sequence as published on the MLST Pasteur website. Core genome MLST (cgMLST) was also performed. All isolates co-carried blaoxa-48 and blaNDM-1 genes located on different plasmids belonging to the IncM/L and IncA/C2 groups, respectively. The 13 strains had identical PFGE profiles. MLST and cgMLST showed that K. pneumoniae was dominated by CRKp ST101 and two novel STs (ST3666 and ST3367), identified after submission to the MLST database for ST assignment. All isolates shared the same virulence factors such as type 3 fimbriae, genes for yersiniabactin biosynthesis, yersiniabactin receptor, and iron ABC transporter. They carried the wzi137 variant associated with the K17 serotype. To the best of our knowledge, this is the first report of two novel STs, 3366 and 3367, NDM-OXA-48-co-producing K. pneumoniae clinical isolates, in Italy.

Keywords

ST3366 ST3367 ST101 NDM OXA-48 Carbapenemase K. pneumoniae 

Notes

Acknowledgments

The authors wish to thank the Scientific Bureau of the University of Catania for language support.

Funding

This work was supported by PRIN 2017 SFBFER.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

References

  1. 1.
    Giani T, Pini B, Arena F, Conte V, Bracco S, Migliavacca R; AMCLI-CRE Survey Participants, Pantosti A, Pagani L, Luzzaro F, Rossolini GM (2013) Epidemic diffusion of KPC carbapenemase-producing Klebsiella pneumoniae in Italy: results of the first countrywide survey, 15 May to 30 June 2011. Euro Surveill 2013; 18:Google Scholar
  2. 2.
    Mezzatesta ML, Gona F, Caio F, Petrolito V, Sciortino D, Sciacca A, Santangelo C, Stefani S (2011) Outbreak of KPC-3-producing, and colistin resistant, Klebsiella pneumoniae infections in two Sicilian hospitals. Clin Microbiol Infect 17:1444–1447.  https://doi.org/10.1111/j.1469-0691.2011.03572.x CrossRefPubMedGoogle Scholar
  3. 3.
    Monaco M, Giani T, Raffone M Arena F, Garcia-Fernandez A, Pollini S; Network EuSCAPE-Italy, Grundmann H, Pantosti A, Rossolini GM (2014) Colistin resistance superimposed to endemic carbapenem-resistant Klebsiella pneumoniae: a rapidly evolving problem in Italy, November 2013 to April 2014. Euro Surveill 19Google Scholar
  4. 4.
    Cascio A, Mezzatesta ML, Odierna A, Di Bernardo F, Barberi G, Iaria C, Stefani S, Giordano S (2014) Extended-spectrum beta-lactamase-producing and carbapenemase-producing Enterobacter cloacae ventriculitis successfully treated with intraventricular colistin. Int J Infect Dis.  https://doi.org/10.1016/j.ijid.2013.11.012
  5. 5.
    Mezzatesta ML, Caio C, Gona F, Zingali T, Salerno I, Stefani S (2016) Colistin increases the cidal activity of antibiotic combinations against multidrug-resistant Klebsiella pneumoniae: an in vitro model comparing multiple combination bactericidal testing at one peak serum concentration and time-kill method. Microb Drug Resist 22:360–363.  https://doi.org/10.1089/mdr.2015.0160 CrossRefPubMedGoogle Scholar
  6. 6.
    Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP, Poirel L, Bonomo RA (2013) Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13:785–796.  https://doi.org/10.1016/S1473-3099(13)70190-7 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Seiffert SN, Marschall J, Perreten V, Carattoli A, Furrer H, Endimiani A (2014) Emergence of Klebsiella pneumoniae co-producing NDM-1, OXA-48, CTX-M-15, CMY-16, QnrA and ArmA in Switzerland. Int J Antimicrob Agents 44:260–262.  https://doi.org/10.1016/j.ijantimicag.2014.05.008 CrossRefPubMedGoogle Scholar
  8. 8.
    Eilertson B, Chen L, Li A, Chavda KD, Chavda B, Kreiswirth BN (2019) CG258 Klebsiella pneumoniae isolates without β-lactam resistance at the onset of the carbapenem-resistant Enterobacteriaceae epidemic in New York City. J Antimicrob Chemother 74:17–21.  https://doi.org/10.1093/jac/dky394 CrossRefPubMedGoogle Scholar
  9. 9.
    Parisi SG, Bartolini A, Santacatterina E, Castellani E, Ghirardo R, Berto A, Franchin E, Menegotto N, De Canale E, Tommasini E, Rinaldi R, Basso M, Stefani S, Palù G (2015) Prevalence of Klebsiella pneumoniae strains producing carbapenemases and increase of resistance to colistin in an Italian teaching hospital from January 2012 to December 2014. BMC Infect Dis 15:244.  https://doi.org/10.1186/s12879-015-0996-7 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nordmann P, Poirel L (2014) The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect 20:821–830.  https://doi.org/10.1111/1469-0691.12719 CrossRefPubMedGoogle Scholar
  11. 11.
    Gu D, Dong N, Zheng Z, Lin D, Huang M, Wang L, Chan EW, Shu L, Yu J, Zhang R, Chen S (2018) A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis 18(1):37–46.  https://doi.org/10.1016/S1473-3099(17)30489-9 CrossRefPubMedGoogle Scholar
  12. 12.
    Lam MMC, Wyres KL, Judd LM, Wick RR, Jenney A, Brisse S, Holt KE (2018) Tracking key virulence loci encoding aerobactin and salmochelin siderophore synthesis in Klebsiella pneumoniae. Genome Med 10(1):77.  https://doi.org/10.1186/s13073-018-0587-5 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Monaco F, Mento GD, Cuscino N, Conaldi PG, Douradinha B (2018) Infant colonisation with Escherichia coli and Klebsiella pneumoniae strains co-harbouring bla OXA-48 and bla NDM-1 carbapenemases genes: a case report. Int J Antimicrob Agents 52:121–122.  https://doi.org/10.1016/j.ijantimicag.2018.04.018 CrossRefPubMedGoogle Scholar
  14. 14.
    Avolio M, Vignaroli C, Crapis M, Camporese A (2017) Co-production of NDM-1 and OXA-232 by ST16 Klebsiella pneumoniae, Italy, 2016. Future Microbiol 12:1119–1122.  https://doi.org/10.2217/fmb-2017-0041 CrossRefPubMedGoogle Scholar
  15. 15.
    Gona F, Mezzatesta ML, Corona D, Zerbo D, Scriffignano V, Stefani S, Veroux P, Veroux M (2011) Klebsiella pneumoniae ESBL producers responsible for severe UTIs in a renal transplant unit. Infection 39:83–85.  https://doi.org/10.1007/s15010-011-0081-0 CrossRefPubMedGoogle Scholar
  16. 16.
    Gona F, Caio C, Iannolo G, Monaco F, Di Mento G, Cuscino N, Fontana I, Panarello G, Maugeri G, Mezzatesta ML, Stefani S, Conaldi PG (2017) Detection of the IncX3 plasmid carrying blaKPC-3 in a Serratia marcescens strain isolated from a kidney-liver transplanted patient. J Med Microbiol 66:1454–1456.  https://doi.org/10.1099/jmm.0.000592 CrossRefPubMedGoogle Scholar
  17. 17.
    Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903.  https://doi.org/10.1128/AAC.02412-14 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Daehre K, Projahn M, Friese A, Semmler T, Guenther S, Roesler UH (2018) ESBL-producing Klebsiella pneumoniae in the broiler production chain and the first description of ST3128. Front Microbiol 9:2302.  https://doi.org/10.3389/fmicb.2018.02302 eCollection 2018 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shankar C, Shankar BA, Manesh A, Veeraraghavan B (2018) KPC-2 producing ST101 Klebsiella pneumoniae from bloodstream infection in India. J Med microbiol 67:927–930.  https://doi.org/10.1099/jmm.0.000767 CrossRefPubMedGoogle Scholar
  20. 20.
    Paczosa MK, Mecsas J (2016) Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev 80:629–661.  https://doi.org/10.1128/MMBR.00078-15 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tiwana H, Walmsley RS, Wilson C, Yiannakou JY, Ciclitira PJ, Wakefield AJ, Ebringer A (1998) Characterization of the humoral immune response to Klebsiella species in inflammatory bowel disease and ankylosing spondylitis. Br J Rheumatol 37:525–531CrossRefPubMedGoogle Scholar
  22. 22.
    Coovadia YM, Johnson AP, Bhana RH, Hutchinson GR, George RC, Hafferjee IE (1992) Multiresistant Klebsiella pneumoniae in a neonatal nursery: the importance of maintenance of infection control policies and procedures in the prevention of outbreaks. J Hosp Infect 22:197–205CrossRefPubMedGoogle Scholar
  23. 23.
    Tarkkanen AM, Westerlund-Wikstrom B, Erkkila L, Korhonen TK (1998) Immunohistological localization of the MrkD adhesin in the type 3 fimbriae of Klebsiella pneumoniae. Infect Immun 66:2356–2361PubMedPubMedCentralGoogle Scholar
  24. 24.
    Schroll C, Barken KB, Krogfelt KA, Struve C (2010) Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol 10(17).  https://doi.org/10.1186/1471-2180-10-179
  25. 25.
    Bachman MA, Oyler JE, Burns SH, Caza M, Lepine F, Dozois CM, Weiser JN (2011) Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infect Immun 79:3309–3316.  https://doi.org/10.1128/IAI.05114-11 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lawlor MS, O’Connor C, Miller VL (2007) Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun 75:1463–1472CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, Jenney A, Connor TR, Li YH, Severin J, Brisse S, Cao H, Wilksch J, Gorrie C, Schultz MB, Edwards DJ, Van Nguyen K, Nguyen TV, Dao TT, Mensink M, Le Minh V, Nhu NTK, Schultsz C, Kuntaman K, Newton PN, Moore CE, Strugnell RA, Thomson NR (2015) Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. PNAS 112:E3574–E3581.  https://doi.org/10.1073/pnas.1501049112 CrossRefPubMedGoogle Scholar
  28. 28.
    Falcone M, Mezzatesta ML, Perilli M, Forcella C, Giordano A, Cafiso V, Amicosante G, Stefani S, Venditti M (2009) Infections with VIM-1 metallo-{beta}-lactamase-producing Enterobacter cloacae and their correlation with clinical outcome. J Clin Microbiol 47(11):3514–3519.  https://doi.org/10.1128/JCM.01193-09 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Falcone M, Perilli M, Mezzatesta ML, Mancini C, Amicosante G, Stefani S, Venditti M (2010) Prolonged bacteraemia caused by VIM-1 metallo-beta-lactamase-producing Proteus mirabilis: first report from Italy. Clin Microbiol Infect 16:179–181.  https://doi.org/10.1111/j.1469-0691.2009.02781.x CrossRefPubMedGoogle Scholar
  30. 30.
    Rock C, Thom KA, Masnick M, Johnson JK, Harris AD, Morgan DJ (2014) Frequency of Klebsiella pneumoniae carbapenemase (KPC)-producing and non-KPC-producing Klebsiella species contamination of healthcare workers and the environment. Infect Control Hosp Epidemiol 35:426–429.  https://doi.org/10.1086/675598 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Floriana Gona
    • 1
  • Dafne Bongiorno
    • 2
  • Ausilia Aprile
    • 2
  • Erika Corazza
    • 2
  • Betta Pasqua
    • 3
  • Maria Grazia Scuderi
    • 3
  • Matteo Chiacchiaretta
    • 1
  • Daniela Maria Cirillo
    • 1
  • Stefania Stefani
    • 2
  • Maria Lina Mezzatesta
    • 2
    Email author
  1. 1.Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious DiseasesIRCCS San Raffaele Scientific InstituteMilanItaly
  2. 2.Department of Biomedical and Biotechnological Sciences, section of MicrobiologyUniversity of CataniaCataniaItaly
  3. 3.U.O. “Policlinico-Vittorio Emanuele G.Rodolico”CataniaItaly

Personalised recommendations