Probabilistic chemotherapy in knee and hip replacement infection: the place of linezolid

  • Luc Deroche
  • Chloé Plouzeau
  • Pascale Bémer
  • Didier Tandé
  • Anne Sophie Valentin
  • Anne Jolivet-Gougeon
  • Carole Lemarié
  • Laurent Bret
  • Marie Kempf
  • Geneviève Héry-Arnaud
  • Stéphane Corvec
  • Christophe Burucoa
  • Cédric Arvieux
  • Louis BernardEmail author
  • and the CRIOGO (Centre de Référence des Infections Ostéo-articulaires du Grand Ouest) Study Group
Original Article


Prosthetic joint infection (PJI) can occur with a wide range of microorganisms and clinical features. After replacement surgery of prosthetic joint, prescription of probabilistic broad-spectrum antimicrobial therapy is usual, while awaiting microbial culture results. The aim of our study was to describe the antibiotic susceptibility of microorganisms isolated from hip and knee PJI. The data were collected to determine the best alternative to the usual combination of piperacillin-tazobactam (TZP) or cefotaxime (CTX) and vancomycin (VAN). Based on a French prospective, multicenter study, we analyzed microbiological susceptibility to antibiotics of 183 strains isolated from patients with confirmed hip or knee PJI. In vitro susceptibility was evaluated: TZP+VAN, TZP+linezolid (LZD), CTX+VAN, and CTX+LZD. We also analyzed resistance to different antibiotics commonly used as oral alternatives. Among the 183 patients with PJI, 62 (34%) had a total knee prosthesis, and 121 (66%) a hip prosthesis. The main identified bacteria were Staphylococcus aureus (32.2% of isolates), coagulase-negative staphylococci (27.3%), Enterobacteriaceae (14.2%), and Streptococcus (13.7%). Infections were polymicrobial for 28 (15.3%) patients. All combinations were highly effective: CTX+VAN, CTX+LZD, TZP+VAN, and TZP+LZD (93.4%, 94%, 98.4%, and 98.9% of all cases respectively). Use of LZD instead of VAN in combination with a broad-spectrum beta-lactam covers almost all of the bacteria isolated in PJI. This association should be considered in probabilistic chemotherapy, as it is particularly easy to use (oral administration and no vancomycin monitoring).


Prosthetic joint infection Probabilistic antibiotics 



We wish to thank Jeffrey Arsham, an American medical translator, for having edited our original English-language manuscript.

The CRIOGO Study group included the following: J. Cottin†, P. Abguegen, P. Bizot, V. Balan (Angers); S. Ansart, E. Stindel, A. Greves (Brest); D. Boutoille, S. Touchais, F. Gouin, N. Asseray, L. Happi (Nantes); J. Guinard, F. Razanabola, C. Mille (Orléans); L.E. Gayet, G. Le Moal, C. Thomas (Poitiers); J.L. Polard, A. Meheut (Rennes); P. Rosset, G. Gras, J. Druon, K. Fèvre (Tours).

Funding information

This study was supported by a grant from the French Ministry of Health (Programme Hospitalier de Recherche Clinique Interrégionale grant API/N/041) and a grant from the Centre de Référence des Infections Ostéo-articulaires du Grand Ouest (CRIOGO).

Compliance with ethical standards

The study protocol (PHRCI API/N/041) was approved by the institutional review board and ethics committee. Informed consent was obtained from each patient before inclusion.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    2016. European Centre for Disease Prevention and Control. Annual Epidemiological Report 2016 – surgical site infectionsGoogle Scholar
  2. 2.
    Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, Rao N, Hanssen A, Wilson WR (2013) Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 56:e1–e25CrossRefGoogle Scholar
  3. 3.
    Esposito S, Leone S, Bassetti M, Borrè S, Leoncini F, Meani E, Venditti M, Mazzotta F, Bone Joint Infections Committee for the Italian Society of Infectious Tropical Diseases (SIMIT) (2009) Italian guidelines for the diagnosis and infectious disease management of osteomyelitis and prosthetic joint infections in adults. Infection 37:478–496CrossRefGoogle Scholar
  4. 4.
    Spilf Orgn (2010) Recommendations for bone and joint prosthetic device infections in clinical practice (prosthesis, implants, osteosynthesis). Med Mal Infect 40:185–211CrossRefGoogle Scholar
  5. 5.
    Bémer P, Plouzeau C, Tande D, Léger J, Giraudeau B, Valentin AS, Jolivet-Gougeon A, Vincent P, Corvec S, Gibaud S, Juvin ME, Héry-Arnaud G, Lemarié C, Kempf M, Bret L, Quentin R, Coffre C, de Pinieux G, Bernard L, Burucoa C, Team the Centre de référence des Infections Ostéo-articulaires du Grand Ouest (CRIOGO) S (2014) Evaluation of 16S rRNA gene PCR sensitivity and specificity for diagnosis of prosthetic joint infection: a prospective multicenter cross-sectional study. J Clin Microbiol 52:3583–3589CrossRefGoogle Scholar
  6. 6.
    Takoudju E, Bemer P, Touchais S, Asseray N, Corvec S, Khatchatourian L, Serandour N, Boutoille D, Nantes Bone and Joint Infections Study Group (2018) Bacteriological relevance of linezolid versus vancomycin in postoperative empirical treatment of osteoarticular infections: a retrospective single-center study. Int J Antimicrob AgentsGoogle Scholar
  7. 7.
    Luther MK, Timbrook TT, Caffrey AR, Dosa D, Lodise TP, LaPlante KL (2018) Vancomycin plus piperacillin-tazobactam and acute kidney injury in adults: a systematic review and meta-analysis. Crit Care Med 46:12–20CrossRefGoogle Scholar
  8. 8.
    Rutter WC, Burgess DS (2018) Incidence of acute kidney injury among patients treated with piperacillin-tazobactam or meropenem in combination with vancomycin. Antimicrob Agents Chemother 62Google Scholar
  9. 9.
    Hadaway L, Chamallas SN (2003) Vancomycin: new perspectives on an old drug. J Infus Nurs 26:278CrossRefGoogle Scholar
  10. 10.
    Titécat M, Senneville E, Wallet F, Dezèque H, Migaud H, Courcol RJ, Loïez C (2015) Microbiologic profile of staphylococci isolated from osteoarticular infections: evolution over ten years. Surg Infect 16:77–83CrossRefGoogle Scholar
  11. 11.
    Cremniter J, Slassi A, Quincampoix J-C, Sivadon-Tardy V, Bauer T, Porcher R, Lortat-Jacob A, Piriou P, Judet T, Herrmann J-L, Gaillard J-L, Rottman M (2010) Decreased susceptibility to teicoplanin and vancomycin in coagulase-negative staphylococci isolated from orthopedic-device-associated infections. J Clin Microbiol 48:1428–1431CrossRefGoogle Scholar
  12. 12.
    Moellering RC (2003) Linezolid: the first oxazolidinone antimicrobial. Ann Intern Med 138:135CrossRefGoogle Scholar
  13. 13.
    Wald-Dickler N, Holtom P, Spellberg B (2018) Busting the myth of “Static vs Cidal”: a systemic literature review. Clin Infect Dis 66:1470–1474CrossRefGoogle Scholar
  14. 14.
    Beekmann SE, Gilbert DN, Polgreen PM (2008) Toxicity of extended courses of linezolid: results of an Infectious Diseases Society of America Emerging Infections Network survey. Diagn Microbiol Infect Dis 62:407–410CrossRefGoogle Scholar
  15. 15.
    Boak LM, Rayner CR, Grayson ML, Paterson DL, Spelman D, Khumra S, Capitano B, Forrest A, Li J, Nation RL, Bulitta JB (2014) Clinical population pharmacokinetics and toxicodynamics of linezolid. Antimicrob Agents Chemother 58:2334–2343CrossRefGoogle Scholar
  16. 16.
    Pettigrew M, Thirion DJ, Libman M, Zanotti G (2012) Cost comparison of linezolid versus vancomycin for treatment of complicated skin and skin-structure infection caused by methicillin-resistant Staphylococcus aureus in Quebec. Can J Infect Dis Med Microbiol 23:187–195CrossRefGoogle Scholar
  17. 17.
    Tan SC, Wang X, Wu B, Kang H, Li Q, Chen Y, Chen C-I, Hajek P, Patel DA, Gao X (2014) Cost-effectiveness of linezolid versus vancomycin among patients with methicillin-resistant Staphylococcus aureus confirmed nosocomial pneumonia in China. Value Health Reg Issues 3:94–100CrossRefGoogle Scholar
  18. 18.
    Mendes RE, Deshpande L, Streit JM, Sader HS, Castanheira M, Hogan PA, Flamm RK (2018) ZAAPS programme results for 2016: an activity and spectrum analysis of linezolid using clinical isolates from medical centres in 42 countries. J Antimicrob Chemother 73:1880–1887CrossRefGoogle Scholar
  19. 19.
    Pfaller MA, Mendes RE, Streit JM, Hogan PA, Flamm RK. (2017) Five-year summary of in vitro activity and resistance mechanisms of linezolid against clinically important Gram-positive cocci in the United States from the LEADER Surveillance Program (2011 to 2015). Antimicrob Agents Chemother 61Google Scholar
  20. 20.
    Long KS, Vester B (2012) Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 56:603–612CrossRefGoogle Scholar
  21. 21.
    Gu B, Kelesidis T, Tsiodras S, Hindler J, Humphries RM (2013) The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother 68:4–11CrossRefGoogle Scholar
  22. 22.
    Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T, Wang D, Wang Z, Shen Y, Li Y, Feßler AT, Wu C, Yu H, Deng X, Xia X, Shen J (2015) A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother 70:2182–2190CrossRefGoogle Scholar
  23. 23.
    Antonelli A, D’Andrea MM, Brenciani A, Galeotti CL, Morroni G, Pollini S, Varaldo PE, Rossolini GM (2018) Characterization of poxtA, a novel phenicol–oxazolidinone–tetracycline resistance gene from an MRSA of clinical origin. J Antimicrob Chemother 73:1763–1769CrossRefGoogle Scholar
  24. 24.
    Weßels C, Strommenger B, Klare I, Bender J, Messler S, Mattner F, Krakau M, Werner G, Layer F. Emergence and control of linezolid-resistant Staphylococcus epidermidis in an ICU of a German hospital. J Antimicrob ChemotherGoogle Scholar
  25. 25.
    Dortet L, Glaser P, Kassis-Chikhani N, Girlich D, Ichai P, Boudon M, Samuel D, Creton E, Imanci D, Bonnin R, Fortineau N, Naas T (2018) Long-lasting successful dissemination of resistance to oxazolidinones in MDR Staphylococcus epidermidis clinical isolates in a tertiary care hospital in France. J Antimicrob Chemother 73:41–51CrossRefGoogle Scholar
  26. 26.
    Morales G, Picazo JJ, Baos E, Candel FJ, Arribi A, Peláez B, Andrade R, de la Torre M-Á, Fereres J, Sánchez-García M (2010) Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin Infect Dis 50:821–825CrossRefGoogle Scholar
  27. 27.
    Li X, Arias CA, Aitken SL, Galloway Peña J, Panesso D, Chang M, Diaz L, Rios R, Numan Y, Ghaoui S, DebRoy S, Bhatti MM, Simmons DE, Raad I, Hachem R, Folan SA, Sahasarabhojane P, Kalia A, Shelburne SA (2018) Clonal emergence of invasive multidrug-resistant Staphylococcus epidermidis deconvoluted via a combination of whole-genome sequencing and microbiome analyses. Clin Infect Dis 67:398–406CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Luc Deroche
    • 1
  • Chloé Plouzeau
    • 1
  • Pascale Bémer
    • 2
  • Didier Tandé
    • 3
  • Anne Sophie Valentin
    • 4
  • Anne Jolivet-Gougeon
    • 5
  • Carole Lemarié
    • 6
  • Laurent Bret
    • 7
  • Marie Kempf
    • 6
  • Geneviève Héry-Arnaud
    • 3
  • Stéphane Corvec
    • 2
  • Christophe Burucoa
    • 1
  • Cédric Arvieux
    • 8
  • Louis Bernard
    • 9
    Email author
  • and the CRIOGO (Centre de Référence des Infections Ostéo-articulaires du Grand Ouest) Study Group
  1. 1.Department of BacteriologyUniversity Hospital of PoitiersPoitiersFrance
  2. 2.Department of BacteriologyUniversity Hospital of NantesNantesFrance
  3. 3.Department of BacteriologyUniversity Hospital of BrestBrestFrance
  4. 4.Department of BacteriologyUniversity Hospital of ToursToursFrance
  5. 5.Department of BacteriologyUniversity Hospital of RennesRennesFrance
  6. 6.Department of BacteriologyUniversity Hospital of AngersAngersFrance
  7. 7.Department of BacteriologyHospital of OrléansOrléansFrance
  8. 8.Infectious Diseases DivisionUniversity Hospital of RennesRennesFrance
  9. 9.Infectious Diseases DivisionUniversity Hospital of ToursToursFrance

Personalised recommendations