Prevalence of fosfomycin resistance among ESBL-producing Escherichia coli isolates in the community, Switzerland

  • Linda MuellerEmail author
  • Cansu Cimen
  • Laurent Poirel
  • Marie-Christine Descombes
  • Patrice Nordmann
Original Article


Our aim was to evaluate the prevalence of fosfomycin-resistant strains among ESBL-producing Escherichia coli isolates recovered from community patients in Switzerland. A total of 1225 ESBL-producing E. coli isolates were collected between 2012 and 2013 from a private and community laboratory. Fosfomycin resistance was assessed by using the novel rapid fosfomycin/E. coli NP test and agar dilution method. Resistant isolates were further investigated for acquired resistance genes fosA1–7 by PCR and sequencing. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed to evaluate the clonal relationship among fosA3-carrying isolates. Out of the 1225 ESBL-producing E. coli isolates analyzed in this study, 1208 were fosfomycin susceptible while 17 were fosfomycin resistant. No discrepancy was observed between the rapid fosfomycin/E. coli NP test and the agar dilution method taken as the gold standard. Five out of the 17 resistant isolates carried a fosA-like gene. No clonal relationship was observed among those isolates. Here, the prevalence of fosfomycin resistance among ESBL-producing E. coli isolates in the community is reported for the first time in Switzerland, being ca. 1.4%. Among the five isolates carrying a fosA gene, four encoded the FosA3 enzyme, being the most prevalent fosfomycin-resistant determinant. An excellent correlation was observed between minimum inhibitory concentration–based susceptibility categorization and results of the rapid fosfomycin/E. coli NP test, further indicating the excellent sensitivity and specificity of this recently developed rapid test whose results are obtained in less than 2 h.


Rapid test Enterobacterales 


Funding information

This work was funded by the Swiss National Science Foundation (project FNS-407240_177382).


  1. 1.
    Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ (2015) Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13(5):269–284CrossRefGoogle Scholar
  2. 2.
    Pitout JDD, Laupland KB (2008) Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8(3):159–166CrossRefGoogle Scholar
  3. 3.
    Ayad A, Drissi M, de Curraize C, Dupont C, Hartmann A, Solanas S et al (2016) Occurence of ArmA and RmtB aminoglycoside resistance 16S rRNA methylases in extended-spectrum ß-lactamases producing Escherichia coli in Algerian hospitals. Front Microbiol 7:1409CrossRefGoogle Scholar
  4. 4.
    Lupo A, Saras E, Madec JY, Haenni M (2018) Emergence of bla CTX-M-55 associated with fosA, rmtB and mcr gene variants in Escherichia coli from various animal species in France. J Antimicrob Chemother 73(4):867–872CrossRefGoogle Scholar
  5. 5.
    Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE (2010) Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum β-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis 10:43–50CrossRefGoogle Scholar
  6. 6.
    Falagas ME, Vouloumanou EK, Samonis G, Vardakas KZ (2016) Fosfomycin. Clin Microbiol Rev 29(2):321–347CrossRefGoogle Scholar
  7. 7.
    Castaneda-Garcia A, Blazquez J, Rodriguez-Rojas A (2013) Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics. 2(2):217–236CrossRefGoogle Scholar
  8. 8.
    Silver LL (2017) Fosfomycin: mechanism and resistance. Cold Spring Harb Perspect Med 7(2):a025262CrossRefGoogle Scholar
  9. 9.
    Nakamura G, Wachino J, Sato N, Kimura K, Yamada K, Jin W et al (2014) Practical agar-based disk potentiation test for detection of fosfomycin-nonsusceptible Escherichia coli clinical isolates producing glutathione S-transferases. J Clin Microbiol 52(9):3175–3179CrossRefGoogle Scholar
  10. 10.
    Ma Y, Xu X, Guo Q, Wang P, Wang W, Wang M (2015) Characterization of fosA5, a new plasmid-mediated fosfomycin resistance gene in Escherichia coli. Lett Appl Microbiol 60(3):259–264CrossRefGoogle Scholar
  11. 11.
    Guo Q, Tomich AD, McElheny CL, Cooper VS, Stoesser N, Wang M et al (2016) Glutathione-S-transferase FosA6 of Klebsiella pneumoniae origin conferring fosfomycin resistance in ESBL-producing Escherichia coli. J Antimicrob Chemother 71(9):2460–2465CrossRefGoogle Scholar
  12. 12.
    Wachino J, Yamane K, Suzuki S, Kimura K, Arakawa Y (2010) Prevalence of fosfomycin resistance among CTX-M-producing Escherichia coli clinical isolates in Japan and identification of novel plasmid-mediated fosfomycin-modifying enzymes. Antimicrob Agents Chemother 54(7):3061–3064CrossRefGoogle Scholar
  13. 13.
    Alrowais H, McElheny CL, Spychala CN, Sastry S, Guo Q, Butt AA et al (2015) Fosfomycin resistance in Escherichia coli, Pennsylvania, USA. Emerg Infect Dis 21(11):2045–2047CrossRefGoogle Scholar
  14. 14.
    Yao H, Wu D, Lei L, Shen Z, Wang Y, Liao K (2016) The detection of fosfomycin resistance genes in Enterobacteriaceae from pets and their owners. Vet Microbiol 193:67–71CrossRefGoogle Scholar
  15. 15.
    Benzerara Y, Gallah S, Hommeril B, Genel N, Decre D, Rottman M et al (2017) Emergence of plasmid-mediated fosfomycin-resistance genes among Escherichia coli isolates, France. Emerg Infect Dis 23(9):1564–1567CrossRefGoogle Scholar
  16. 16.
    Oteo J, Orden B, Bautista V, Cuevas O, Arroyo M, Martinez-Ruiz R et al (2009) CTX-M-15-producing urinary Escherichia coli O25b-ST131-phylogroup B2 has acquired resistance to fosfomycin. J Antimicrob Chemother 64(4):712–717CrossRefGoogle Scholar
  17. 17.
    Peretz A, Naamneh B, Tkhawkho L, Nitzan O (2019) High rates of fosfomycin resistance in Gram-negative urinary isolates from Israel. Microb Drug Resist In press 0(0):1-5Google Scholar
  18. 18.
    Institute CaLS (2018) Performance standards for antimicrobial susceptibility testing; 28th informational supplement. CLSI document M100-S28. Clinical and Laboratory Standards Institute, Wayne, PAGoogle Scholar
  19. 19.
    European Committee on Antimicrobial Susceptibility Testing (2019) Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0. Accessed 10 jan 2019
  20. 20.
    Nordmann P, Poirel L, Mueller L (2019) Rapid detection of Fosfomycin resistance in Escherichia coli. J Clin Microbiol 57(1):e01531–e01518Google Scholar
  21. 21.
    Erb S, Frei R, Tschudin Sutter S, Egli A, Dangel M, Bonkat G et al (2018) Basic patient characteristics predict antimicrobial resistance in E. coli from urinary tract specimens: a retrospective cohort analysis of 5246 urine samples. Swiss Med Wkly 148:w14660Google Scholar
  22. 22.
    Lee SY, Park YJ, Yu JK, Jung S, Kim Y, Jeong SH et al (2012) Prevalence of acquired fosfomycin resistance among extended-spectrum ß-lactamase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Korea and IS26-composite transposon surrounding fosA3. J Antimicrob Chemother 67(12):2843–2847CrossRefGoogle Scholar
  23. 23.
    Cattoir V, Guérin F (2018) How is fosfomycin resistance developed in Escherichia coli? Future Microbiol 13(16):1693–1696CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
  2. 2.Swiss National Reference Center for Emerging Antibiotic Resistance (NARA)University of FribourgFribourgSwitzerland
  3. 3.Infectious Diseases and Clinical Microbiology ClinicArdahan Public HospitalArdahanTurkey
  4. 4.INSERM European Unit (IAME/LEA, France)University of FribourgFribourgSwitzerland
  5. 5.Laboratoire ProxilisMeyrinSwitzerland
  6. 6.University Hospital Center and University of LausanneLausanneSwitzerland

Personalised recommendations