Advertisement

A molecular epidemiological investigation of methicillin-susceptible Staphylococcus aureus causing bloodstream infections in Ireland, 2006–2017

  • Emily C. Deasy
  • Gráinne I. Brennan
  • Sarah C. Tecklenborg
  • Chioma Umeh
  • David C. Coleman
  • Anna C. ShoreEmail author
Original Article
  • 56 Downloads

Abstract

The prevalence of methicillin-susceptible Staphylococcus aureus (MSSA) bloodstream infections (BSIs) has increased in many countries, including Ireland. This study aimed to investigate the molecular epidemiology of MSSA causing BSIs in Irish hospitals between 2006 and 2017, when MSSA BSIs increased, to identify any potential patient or pathogen contributing factors. A total of 252 MSSA isolates from patients in Irish hospitals in 2006/2007, 2011 and 2017 underwent spa typing and DNA microarray profiling. Each patient’s gender, age, 14-day mortality and epidemiological context of infection were recorded. Significant increases in community-onset (CO) MSSA BSIs and the average patient’s age and decreases in hospital-onset (HO) MSSA were identified. Although, extensive genetic diversity was detected amongst the isolates, i.e. 24 multilocus sequence type clonal complexes (CCs)/sequence types and 124 spa types, three CCs (CC30, CC45, CC5) dominated, albeit in different proportions, during the study periods. CC30 declined significantly, in particular spa type t021, and was more common amongst HO-MSSA and CC45 and CC8 increased, particularly spa types t015 and t008, respectively, and were more common amongst CO-MSSA. Five of the seven most frequent spa types were more common amongst CO-MSSA. Although overall multidrug resistance decreased, the prevalence of erm(C) increased significantly and virulence genes decreased, mostly notably egc, tst, scn, sep and fnbB. This study highlights the threat posed by the increasing prevalence of CO-MSSA BSIs and suggests an association with the increasing prevalence of CC45 CO-MSSA, decreasing prevalence of CC30 HO-MSSA, an ageing population and an overall decrease in virulence and resistance genes.

Keywords

MSSA Bloodstream infections Molecular epidemiology Virulence genes Resistance genes 

Notes

Acknowledgments

We thank the hospitals for referring their isolates to the NMRSARL and the staff, past and present, of the NMRSARL, for technical assistance.

Funding

This work was supported by the Irish National MRSA Reference Laboratory and the Microbiology Research Unit, Dublin Dental University Hospital.

Compliance with ethical standards

Ethical approval and informed consent were not required for this study as isolates were collected as part of routine patient screening and no identifiable patient data was accessed for the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10096_2019_3523_MOESM1_ESM.pdf (319 kb)
ESM 1 (PDF 318 kb)

References

  1. 1.
    Goto M, Al-Hasan MN (2013) Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin Microbiol Infect 19:501–509.  https://doi.org/10.1111/1469-0691.12195 CrossRefGoogle Scholar
  2. 2.
    European Centre for Disease Prevention and Control (ECDC) (2017) Surveillance of antimicrobial resistance in Europe 2016. https://ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2016. Accessed 26 Nov 2018
  3. 3.
    Laupland KB (2013) Incidence of bloodstream infection: a review of population-based studies. Clin Microbiol Infect 19:492–500.  https://doi.org/10.1111/1469-0691.12144 CrossRefGoogle Scholar
  4. 4.
    de Kraker MEA, Jarlier V, Monen JCM, Heuer OE, van de Sande N, Grundmann H (2014) The changing epidemiology of bacteraemias in Europe: trends from the European Antimicrobial Resistance Surveillance System. Clin Microbiol Infect 19:860–868.  https://doi.org/10.1111/1469-0691.12028 CrossRefGoogle Scholar
  5. 5.
    Chong YP, Park SJ, Kim HS, Kim ES, Kim MN, Park KH, Kim SH, Lee SO, Choi SH, Jeong JY, Woo JH, Kim YS (2013) Persistent Staphylococcus aureus bacteremia. Medicine 92:98–108.  https://doi.org/10.1097/MD.0b013e318289ff1e CrossRefGoogle Scholar
  6. 6.
    Kaasch AJ, Barlow G, Edgeworth JD, Fowler VG, Hellmich M, Hopkins S, Kern WV, Llewelyn MJ, Rieg S, Rodriguez-Bano J, Scarborough M, Seifert H, Soriano A, Tilley R, Torok ME, Weiβ V, Wilson PR, Thwaites GE (2014) Staphylococcus aureus bloodstream infection: a pooled analysis of five prospective, observational studies. J Infect 68(3):242–251.  https://doi.org/10.1016/j.jinf.2013.10.015 CrossRefGoogle Scholar
  7. 7.
    Seas C, Garcia C, Salles MJ, Labarca J, Luna C, Alvarez-Moreno C, Mejía-Villatoro C, Zurita J, Guzmán-Blanco M, Rodríguez-Noriega E, Reyes J, Arias CA, Carcamo C, Gotuzzo E (2017) Staphylococcus aureus bloodstream infections in Latin America: results of a multinational prospective cohort study. J Antimicrob Chemother 73:212–222.  https://doi.org/10.1093/jac/dkx350 CrossRefGoogle Scholar
  8. 8.
    Harbarth S, Rutschmann O, Sudre P, Pittet D (1998) Impact of methicillin resistance on the outcome of patients with bacteremia caused by Staphylococcus aureus. Arch Intern Med 158:182–189CrossRefGoogle Scholar
  9. 9.
    Tom S, Galbraith JC, Valiquette L, Jacobsson G, Collignon P, Schøheyder HC, Søgaard M, Kennedy KJ, Knudsen JD, Østergaard C, Lyytikainen O, Laupland KB (2014) Case fatality ratio and mortality rate trends of community-onset Staphylococcus aureus bacteraemia. Clin Microbiol Infect 20:O630–O632.  https://doi.org/10.1111/1469-0691.12564 CrossRefGoogle Scholar
  10. 10.
    European Antimicrobial Resistance Surveillance Network (EARS-Net) (2018) Irish Annual Report on Antimicrobial Resistance 2016. http://www.hpsc.ie/a-z/microbiologyantimicrobialresistance/europeanantimicrobialresistancesurveillancesystemearss/ears-netdataandreports/annualreports/. Accessed 26 Nov 2018
  11. 11.
    Wilson J, Elgohari S, Livermore DM, Cookson B, Johnson A, Lamagni T, Chronias A, Sheridan E (2014) Trends among pathogens reported as causing bacteraemia in England, 2004–2008. Clin Microbiol Infect 17:451–458.  https://doi.org/10.1111/j.1469-0691.2010.03262.x CrossRefGoogle Scholar
  12. 12.
    Grundmann H, Schouls LM, Aanensen DM, Pluister GN, Tami A, Chlebowicz M, Glasner C, Sabat AJ, Weist K, Heuer O, Friedrich AW, ESCMID Study Group on Moleculae Epidemiological Markers; European Staphylococcal Reference Laboratory Working Group (2014) The dynamic changes of dominant clones of Staphylococcus aureus causing bloodstream infections in the European region: results of a second structured survey. Euro Surveill 19(49).  https://doi.org/10.2807/1560-7917.es2014.19.49.20987.
  13. 13.
    Grundmann H, Aanensen DM, van den Wijngaard CC, Spratt BG, Harmsen D, Friedrich AW, European Staphylococcal Reference Laboratory Working Group (2010) Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med 7:e1000215–e1000215.  https://doi.org/10.1371/journal.pmed.100021 CrossRefGoogle Scholar
  14. 14.
    Holden MTG, Hsu L-Y, Kurt K, Weinert LA, Mather AE, Harris SR, Strommenger B, Layer F, Witte W, de Lencastre H, Skov R, Westh H, Zemlickova H, Coombs G, Kearns AM, Castillo-Ramirez S, Feil EJ, Hudson LO, Enright MC, Balloux F, Aanensen DM, Spratt BG, Fitzgerald JR, Achtman M, Bentley SD, Nubel U (2013) A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res 23:653–664.  https://doi.org/10.1101/gr.147710.112 CrossRefGoogle Scholar
  15. 15.
    Irish National MRSA Reference Laboratory. Annual report 2015. http://www.stjames.ie/Departments/DepartmentsA-Z/N/NationalMRSAReferenceLaboratory/DepartmentinDepth/AnnRpt2015.pdf. Accessed 26 Nov 2018
  16. 16.
    Shore AC, Rossney AS, Kinnevey PM, Brennan OM, Creamer E, Sherlock O, Dolan A, Cunney R, Sullivan DJ, Goering RV, Humphreys H, Coleman DC (2010) Enhanced discrimination of highly clonal ST22-methicillin-resistant Staphylococcus aureus IV isolates achieved by combining spa, dru, and pulsed-field gel electrophoresis typing data. J Clin Microbiol 48(5):1839–1852.  https://doi.org/10.1128/JCM.02155-09 CrossRefGoogle Scholar
  17. 17.
    Wehrhahn MC, Robinson JO, Pascoe EM, Coombs GW, Pearson JC, O'Brien FG, Tan HL, New D, Salvaris P, Salvaris R, Murray RJ (2012) Illness severity in community-onset invasive Staphylococcus aureus infection and the presence of virulence genes. J Infect Dis 205:1840–1848.  https://doi.org/10.1093/infdis/jis279 CrossRefGoogle Scholar
  18. 18.
    Dekker D, Wolters M, Mertens E, Boahen KG, Krumkamp R, Eibach D, Schwarz NG, Adu-Sarkodie Y, Rohde H, Christner M, Marks F, Sarpong N, May J (2016) Antibiotic resistance and clonal diversity of invasive Staphylococcus aureus in the rural Ashanti Region, Ghana. BMC Infect Dis 16:1–6.  https://doi.org/10.1186/s12879-016-2048-3 CrossRefGoogle Scholar
  19. 19.
    Park K-H, Greenwood-Quaintance KE, Uhl JR, Cunningham SA, Chia N, Jeraldo PR, Sampathkumar P, Nelson H, Patel R (2017) Molecular epidemiology of Staphylococcus aureus bacteremia in a single large Minnesota medical center in 2015 as assessed using MLST, core genome MLST and spa typing. PLoS One 12:e0179003–e0179012.  https://doi.org/10.1371/journal.pone.0179003 CrossRefGoogle Scholar
  20. 20.
    Pérez-Montarelo D, Viedma E, Larrosa N, Gómez-González C, Ruiz de Gopegui E, Muñoz-Gallego I, San Juan R, Fernández-Hidalgo N, Almirante B, Chaves F (2018) Molecular epidemiology of Staphylococcus aureus bacteremia: association of molecular factors with the source of infection. Front Microbiol 9:2210.  https://doi.org/10.3389/fmicb.2018.02210 CrossRefGoogle Scholar
  21. 21.
    Tavares A, Faria NA, Lencastre H, Miragaia M (2013) Population structure of methicillin-susceptible Staphylococcus aureus (MSSA) in Portugal over a 19-year period (1992–2011). Eur J Clin Microbiol Infect Dis 33:423–432.  https://doi.org/10.1007/s10096-013-1972-z CrossRefGoogle Scholar
  22. 22.
    Vandendriessche S, De Boeck H, Deplano A, Phoba MF, Lunguya O, Falay D, Dauly N, Verhaegen J, Denis O, Jacobs J (2017) Characterisation of Staphylococcus aureus isolates from bloodstream infections, Democratic Republic of the Congo. Eur J Clin Microbiol Infect Dis 36:1–9.  https://doi.org/10.1007/s10096-017-2904-0 CrossRefGoogle Scholar
  23. 23.
    Monecke S, Müller E, Dorneanu OS, Vremeră T, Ehricht R (2014) Molecular typing of MRSA and of clinical Staphylococcus aureus isolates from Iaşi, Romania. PLoS One 9:e97833–e97839.  https://doi.org/10.1371/journal.pone.0097833 CrossRefGoogle Scholar
  24. 24.
    Yu F, Li T, Huang X, Xie J, Xu Y, Tu J, Qin Z, Parsons C, Wang J, Hu L, Wang L (2012) Virulence gene profiling and molecular characterization of hospital-acquired Staphylococcus aureus isolates associated with bloodstream infection. Diagn Microbiol Infect Dis 74:363–368.  https://doi.org/10.1016/j.diagmicrobio.2012.08.015 CrossRefGoogle Scholar
  25. 25.
    European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2018) Breakpoint tables for interpretation of MICs and zone diameters 2016. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_table.pdf
  26. 26.
    Monecke S, Slickers P, Ehricht R (2008) Assignment of Staphylococcus aureus isolates to clonal complexes based on microarray analysis and pattern recognition. FEMS Immunol Med Microbiol 53:237–251.  https://doi.org/10.1111/j.1574-695X.2008.00426.x CrossRefGoogle Scholar
  27. 27.
    Laupland KB, Lyytikäinen OL, Søgaard M, Kennedy KJ, Knudsen JD, Ostergaard C, Galbraith JC, Valiquette L, Jacobsson G, Collignon P, Schønheyder HC, International Bacteremia Surveillance Collaborative (2014) The changing epidemiology of Staphylococcus aureus bloodstream infection: a multinational population-based surveillance study. Clin Microbiol Infect 19:465–471.  https://doi.org/10.1111/j.1469-0691.2012.03903.x CrossRefGoogle Scholar
  28. 28.
    Central Statistics Office (CSO) Ireland (2018) Census 2016 Profile 3—an age profile of Ireland. https://www.cso.ie/en/csolatestnews/presspages/2017/census2016profile3-anageprofileofireland/. Accessed 26 Nov 2018
  29. 29.
    Melzer M, Welch C (2013) Thirty-day mortality in UK patients with community-onset and hospital-acquired meticillin-susceptible Staphylococcus aureus bacteraemia. J Hosp Infect 84:143–150.  https://doi.org/10.1016/j.jhin.2012.12.013 CrossRefGoogle Scholar
  30. 30.
  31. 31.
    BystroÅ JA, Podkowik M, Piasecki T, Wieliczko A, Molenda J, Bania J (2010) Genotypes and enterotoxin gene content of S. aureus isolates from poultry. Vet Microbiol 144:498–501.  https://doi.org/10.1016/j.vetmic.2010.01.029 CrossRefGoogle Scholar
  32. 32.
    Mroczkowska A, Żmudzki J, Marszałek N, Orczykowska-Kotyna M, Komorowska I, Nowak A, Grzesiak A, Czyżewska-Dors E, Dors A, Pejsak Z, Hryniewicz W, Wyszomirski T, Empel J (2017) Livestock-associated Staphylococcus aureus on Polish pig farms. PLoS One 12:e0170745–e0170718.  https://doi.org/10.1371/journal.pone.0170745 CrossRefGoogle Scholar
  33. 33.
    Alba P, Feltrin F, Cordaro G, Porrero MC, Kraushaar B, Argudín MA, Nykäsenoja S, Monaco M, Stegger M, Aarestrup FM, Butaye P, Franco A, Battisti A (2015) Livestock-associated methicillin resistant and methicillin susceptible Staphylococcus aureus sequence type (CC)1 in European farmed animals: high genetic relatedness of isolates from Italian cattle herds and humans. PLoS One 10:e0137143–e0137110.  https://doi.org/10.1371/journal.pone.0137143 CrossRefGoogle Scholar
  34. 34.
    Health Service Executive and Health Protection Surveillance Centre (2018) Annual epidemiological report on antimicrobial consumption in Ireland, 2017. http://www.hpsc.ie/a-z/microbiologyantimicrobialresistance/europeansurveillanceofantimicrobialconsumptionesac/surveillancereports/AER_AntimicrobialConsumption_2017.pdf. Accessed 26 Nov 2018
  35. 35.
    Challagundla L, Reyes J, Rafiqullah I, Sordelli DO, Echaniz-Aviles G, Velazquez-Meza ME, Castillo-Ramírez S, Fittipaldi N, Feldgarden M, Chapman SB, Calderwood MS, Carvajal LP, Rincon S, Hanson B, Planet PJ, Arias CA, Diaz L, Robinson DA Phylogenomic classification and the evolution of clonal complex 5 methicillin-resistant Staphylococcus aureus in the Western Hemisphere. Front Microbiol 9:2197–2114.  https://doi.org/10.3389/fmicb.2018.01901
  36. 36.
    Yokoyama M, Stevens E, Laabei M, Bacon L, Heesom K, Bayliss S, Ooi N, O'Neill AJ, Murray E, Williams P, Lubben A, Reeksting S, Meric G, Pascoe B, Sheppard SK, Recker M, Hurst LD, Massey RC (2018) Epistasis analysis uncovers hidden antibiotic resistance-associated fitness costs hampering the evolution of MRSA. Genome Biol 19(1):94.  https://doi.org/10.1186/s13059-018-1469-2 CrossRefGoogle Scholar
  37. 37.
    Ellington MJ, Hope R, Ganner M, Ganner M, East C, Brick G, Kearns AM (2007) Is Panton–Valentine leucocidin associated with the pathogenesis of Staphylococcus aureus bacteraemia in the UK? J Antimicrob Chemother 60(2):402–405.  https://doi.org/10.1093/jac/dkm206 CrossRefGoogle Scholar
  38. 38.
    Saeed K, Gould I, Esposito S, Ahmad-Saeed N, Ahmed SS, Alp E, Bal AM, Bassetti M, Bonnet E, Chan M, Coombs G, Dancer SJ, David MZ, De Simone G, Dryden M, Guardabassi L, Hanitsch LG, Hijazi K, Krüger R, Lee A, Leistner R, Pagliano P, Righi E, Schneider-Burrus S, Skov RL, Tattevin P, Van Wamel W, Vos MC, Voss A, International Society of Chemotherapy (2018) Panton–Valentine leukocidin-positive Staphylococcus aureus: a position statement from the International Society of Chemotherapy. Int J Antimicrob Agents 51(1):16–25.  https://doi.org/10.1016/j.ijantimicag.2017.11.002 CrossRefGoogle Scholar
  39. 39.
    Statens Serum Institut and National Food Institute, Technical University of Denmark (2018) DANMAP 2017. https://www.danmap.org/-/media/arkiv/projekt-sites/danmap/danmap-reports/danmap-2017/danmap2017.pdf?la=en. Accessed 26 Nov 2018

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Microbiology Research Unit, Dublin Dental University HospitalUniversity of Dublin, Trinity College DublinDublinIreland
  2. 2.National MRSA Reference LaboratorySt. James’s HospitalDublinIreland

Personalised recommendations