Nucleic acid testing and molecular characterization of HIV infections

  • Junpeng Zhao
  • Le Chang
  • Lunan WangEmail author


Significant advances have been made in the molecular assays used for the detection of human immunodeficiency virus (HIV), which are crucial in preventing HIV transmission and monitoring disease progression. Molecular assays for HIV diagnosis have now reached a high degree of specificity, sensitivity and reproducibility, and have less operator involvement to minimize risk of contamination. Furthermore, analyses have been developed for the characterization of host gene polymorphisms and host responses to better identify and monitor HIV-1 infections in the clinic. Currently, molecular technologies including HIV quantitative and qualitative assays are mainly based on the polymerase chain reaction (PCR), transcription-mediated amplification (TMA), nucleic acid sequence-based amplification (NASBA), and branched chain (b) DNA methods and widely used for HIV detection and characterization, such as blood screening, point-of-care testing (POCT), pediatric diagnosis, acute HIV infection (AHI), HIV drug resistance testing, antiretroviral (AR) susceptibility testing, host genome polymorphism testing, and host response analysis. This review summarizes the development and the potential utility of molecular assays used to detect and characterize HIV infections.


Human immunodeficiency virus Quantitative nucleic assays Qualitative nucleic acid assays Nucleic acid testing Characterization 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
  2. 2.
  3. 3.
    Branson B, Owen SM, Bennett B, Werner BG, Pentella MA, Wesolowski LG (2014) Laboratory testing for the diagnosis of HIV infection: updated recommendations. AlgorithmsGoogle Scholar
  4. 4.
    Earl LA, Lifson JD, Subramaniam S (2013) Catching HIV ‘in the act’ with 3D electron microscopy. Trends Microbiol 21(8):397–404CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Viana IFT, Coelho DF, Palma ML, Nascimento EJM, Gu G, Lima LFO et al (2018) Detection of IgG3 antibodies specific to the human immunodeficiency virus type 1 (HIV-1) p24 protein as marker for recently acquired infection. Epidemiol Infect 146(10):1293–1300CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ou CY, Kwok S, Mitchell SW, Mack DH, Sninsky JJ, Krebs JW et al (1988) DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science 239(4837):295–297CrossRefPubMedGoogle Scholar
  7. 7.
    Brauer M, De Villiers JC, Mayaphi SH (2013) Evaluation of the determine fourth generation HIV rapid assay. J Virol Methods 189(1):180–183CrossRefPubMedGoogle Scholar
  8. 8.
    Ly TD, Laperche S, Brennan C, Vallari A, Ebel A, Hunt J et al (2004) Evaluation of the sensitivity and specificity of six HIV combined p24 antigen and antibody assays. J Virol Methods 122(2):185–194CrossRefPubMedGoogle Scholar
  9. 9.
    Zhao Y, Gou Y, Li D, Wang T, Huang X, Shi M et al (2018) Performance evaluation of a new automated fourth-generation HIV Ag/Ab combination chemiluminescence immunoassay. Clin Chem Lab Med 56(5):e115–e117CrossRefPubMedGoogle Scholar
  10. 10.
    Delaney KP, Wesolowski LG, Owen SM (2017) The evolution of HIV testing continues. Sex Transm Dis 44(12):747–749CrossRefPubMedGoogle Scholar
  11. 11.
    (2018) Advantages and disadvantages of FDA-approved HIV assays used for screening, by test category,
  12. 12.
    (2014) Laboratory testing for the diagnosis of hiv infection updated recommendations,
  13. 13.
    Branson BM, Stekler JD (2012) Detection of acute HIV infection: we can’t close the window. J Infect Dis 205(4):521–524CrossRefPubMedGoogle Scholar
  14. 14.
    Weber B (2006) Screening of HIV infection: role of molecular and immunological assays. Expert Rev Mol Diagn 6(3):399–411CrossRefPubMedGoogle Scholar
  15. 15.
    Galel SA, Simon TL, Williamson PC, AuBuchon JP, Waxman DA, Erickson Y et al (2018) Sensitivity and specificity of a new automated system for the detection of hepatitis B virus, hepatitis C virus, and human immunodeficiency virus nucleic acid in blood and plasma donations. Transfusion 58(3):649–659CrossRefPubMedGoogle Scholar
  16. 16.
    Pas S, Rossen JW, Schoener D, Thamke D, Pettersson A, Babiel R et al (2010) Performance evaluation of the new Roche Cobas AmpliPrep/Cobas TaqMan HIV-1 test version 2.0 for quantification of human immunodeficiency virus type 1 RNA. J Clin Microbiol 48(4):1195–1200CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Schmidt M, Korn K, Nubling CM, Chudy M, Kress J, Horst HA et al (2009) First transmission of human immunodeficiency virus type 1 by a cellular blood product after mandatory nucleic acid screening in Germany. Transfusion 49(9):1836–1844CrossRefPubMedGoogle Scholar
  18. 18.
    Müller B, Nübling CM, Kress J, Roth WK, De Zolt S, Pichl L (2013) How safe is safe: new human immunodeficiency virus type 1 variants missed by nucleic acid testing. Transfusion 53(10pt2):2422–2430CrossRefPubMedGoogle Scholar
  19. 19.
  20. 20.
    Human immunodeficiency virus, type 1 (HIV-1) REVERSE TRANSCRIPTION (RT) polymerase chain reaction (PCR) assay,
  21. 21.
  22. 22.
  23. 23.
  24. 24.
  25. 25.
    cobas HIV-1 Quantitative nucleic acid test for use on the cobas 6800/8800 Systems,
  26. 26.
  27. 27.
    COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, 48 Tests; COBAS AmpliPrep/COBAS TaqMan Wash Reagent, 5.1 L, BiologicsBloodVaccines/BloodBloodProducts/Approv-edProducts/PremarketApprovalsPMAs/UCM092878.pdf
  28. 28.
    Abbott RealTime HIV-1 Amplification Reagent Kit, Abbott RealTime HIV-1 Calibrator Kit, Abbott RealTime HIV-1 Control Kit,
  29. 29.
    Gomes P, Palma AC, Cabanas J, Abecasis A, Carvalho AP, Ziermann R et al (2006) Comparison of the COBAS TAQMAN HIV-1 HPS with VERSANT HIV-1 RNA 3.0 assay (bDNA) for plasma RNA quantitation in different HIV-1 subtypes. J Virol Methods 135(2):223–228CrossRefPubMedGoogle Scholar
  30. 30.
  31. 31.
    Eshleman SH, John H, Priscilla S, Cunningham SP, Birgit D, Catherine B et al (2004) Performance of the Celera Diagnostics ViroSeq HIV-1 Genotyping System for sequence-based analysis of diverse human immunodeficiency virus type 1 strains. J Clin Microbiol 42(6):2711CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
  33. 33.
    Robert MG, Daniel RK, Victoria AJ, John WM, John LS, Ronald S et al (2003) Accuracy of the TRUGENE HIV-1 genotyping kit. J Clin Microbiol 41(4):1586CrossRefGoogle Scholar
  34. 34.
  35. 35.
  36. 36.
  37. 37.
  38. 38.
  39. 39.
  40. 40.
  41. 41.
    Bourlet T, Memmi M, Saoudin H, Pozzetto B (2013) Molecular HIV screening. Expert Rev Mol Diagn 13(7):693–705CrossRefPubMedGoogle Scholar
  42. 42.
    Stevens WS, Noble L, Berrie L, Sarang S, Scott LE (2009) Ultra-high-throughput, automated nucleic acid detection of human immunodeficiency virus (HIV) for infant infection diagnosis using the Gen-Probe Aptima HIV-1 screening assay. J Clin Microbiol 47(8):2465–2469CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Simonds RJ, Brown TM, Thea DM, Orloff SL, Steketee RW, Lee FK et al (1998) Sensitivity and specificity of a qualitative RNA detection assay to diagnose HIV infection in young infants. Perinatal AIDS Collaborative Transmission Study. Aids 12(12):1545–1549CrossRefPubMedGoogle Scholar
  44. 44.
    Dubrow R, Qin L, Lin H, Hernandez-Ramirez RU, Neugebauer RS, Leyden W et al (2017) Association of CD4+ T-cell count, HIV-1 RNA viral load, and antiretroviral therapy with Kaposi sarcoma risk among HIV-infected persons in the United States and Canada. J Acquir Immune Defic Syndr 75(4):382–390CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    May MT, Gompels M, Delpech V, Porter K, Orkin C, Kegg S et al (2014) Impact on life expectancy of HIV-1 positive individuals of CD4+ cell count and viral load response to antiretroviral therapy. Aids 28(8):1193–1202CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Mellors JW, Rinaldo CR Jr, Gupta P, White RM, Todd JA, Kingsley LA (1996) Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272(5265):1167–1170CrossRefPubMedGoogle Scholar
  47. 47.
    Cozzi LA, Katzenstein TL, Ullum H, Phillips AN, Skinhøj P, Gerstoft J et al (1998) The relative prognostic value of plasma HIV RNA levels and CD4 lymphocyte counts in advanced HIV infection. Aids 12(13):1639–1643CrossRefGoogle Scholar
  48. 48.
    Abbott MA, Poiesz BJ, Byrne BC, Kwok S, Sninsky JJ, Ehrlich GD (1988) Enzymatic gene amplification: qualitative and quantitative methods for detecting proviral DNA amplified in vitro. J Infect Dis 158(6):1158–1169CrossRefPubMedGoogle Scholar
  49. 49.
    Malek L, Sooknanan R, Compton J (1994) Nucleic acid sequence-based amplification (NASBA). Methods Mol Biol 28(28):253PubMedGoogle Scholar
  50. 50.
    Horn T, Chang CA, Urdea MS (1997) Chemical synthesis and characterization of branched oligodeoxyribonucleotides (bDNA) for use as signal amplifiers in nucleic acid quantification assays. Nucleic Acids Res 25(23):4842–4849CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sloma CR, Germer JJ, Gerads TM, Mandrekar JN, Mitchell PS, Yao JD (2009) Comparison of the Abbott realtime human immunodeficiency virus type 1 (HIV-1) assay to the Cobas AmpliPrep/Cobas TaqMan HIV-1 test: workflow, reliability, and direct costs. J Clin Microbiol 47(4):889–895CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Schumacher W, Frick E, Kauselmann M, Maier-Hoyle V, van der Vliet R, Babiel R (2007) Fully automated quantification of human immunodeficiency virus (HIV) type 1 RNA in human plasma by the COBAS AmpliPrep/COBAS TaqMan system. J Clin Virol 38(4):304–312CrossRefPubMedGoogle Scholar
  53. 53.
    Korn K, Weissbrich B, Henke-Gendo C, Heim A, Jauer CM, Taylor N et al (2009) Single-point mutations causing more than 100-fold underestimation of human immunodeficiency virus type 1 (HIV-1) load with the Cobas TaqMan HIV-1 real-time PCR assay. J Clin Microbiol 47(4):1238–1240CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Tung YC, Ke LY, Lu PL, Lin KH, Lee SC, Lin YY et al (2015) Comparison of the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 test V1.0 with V2.0 in HIV-1 viral load quantification. Kaohsiung J Med Sci 31(4):188–193CrossRefPubMedGoogle Scholar
  55. 55.
    Mourez T, Delaugerre C, Vray M, Lemee V, Simon F, Plantier JC (2015) Comparison of the bioMerieux NucliSENS EasyQ HIV-1 V2.0-HIV-1 RNA quantification assay versus Abbott RealTime HIV-1 and Roche Cobas TaqMan HIV-1 V2.0 on current epidemic HIV-1 variants. J Clin Virol 71:76–81CrossRefPubMedGoogle Scholar
  56. 56.
    Manak MM, Hack HR, Nair SV, Worlock A, Malia JA, Peel SA et al (2016) Evaluation of Hologic Aptima HIV-1 Quant Dx assay on the Panther System on HIV subtypes. J Clin Microbiol 54(10):2575–2581CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Loetscher P (2017) Performance evaluation of Cobas® HIV-1, a quantitative nucleic acid test for use on the Cobas® 6800/8800 systems. Journal of HIV and AIDS 3(1)Google Scholar
  58. 58.
    Wiesmann F, Ehret R, Naeth G, Daumer M, Fuhrmann J, Kaiser R et al (2018) Multicenter evaluation of two next-generation HIV-1 quantitation assays, Aptima Quant Dx and Cobas 6800, in comparison to the RealTime HIV-1 reference assay. J Clin Microbiol 56(10)Google Scholar
  59. 59.
    Elbeik T, Loftus RA, Beringer S (2014) Health care industries perspective of viral load assays: the VERSANT HIV-1 RNA 3.0 assay. Expert Rev Mol Diagn 2(3):275–285CrossRefGoogle Scholar
  60. 60.
    Zhang L, Jin C, Jiang Z, Tang T, Jiang Y, Pan PL (2017) Comparison of commercial HIV-1 viral load tests by using proficiency test results in China, 2013–2015. Zhonghua Liu Xing Bing Xue Za Zhi 38(9):1231–1235PubMedGoogle Scholar
  61. 61.
    Baumeister MA, Zhang N, Beas H, Brooks JR, Canchola JA, Cosenza C et al (2012) A sensitive branched DNA HIV-1 signal amplification viral load assay with single day turnaround. PLoS One 7(3):e33295CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Xu S, Song A, Nie J, Li X, Wang Y (2010) Performance of NucliSens HIV-1 EasyQ Version 2.0 compared with six commercially available quantitative nucleic acid assays for detection of HIV-1 in China. Mol Diagn Ther 14(5):305CrossRefPubMedGoogle Scholar
  63. 63.
    (2016) BioMerieux SA alerts customers about potential inaccurate test results when using NucliSENS® easyMAG® magnetic silica for nucleic acid extraction,
  64. 64.
    Roth WK, Weber M, Seifried E (1999) Feasibility and efficacy of routine PCR screening of blood donations for hepatitis C virus, hepatitis B virus, and HIV-1 in a blood-bank setting. Lancet 353(9150):359CrossRefPubMedGoogle Scholar
  65. 65.
    Susan AF, Takesha M, Julie AEN, William CM (2013) Validation of the gen-probe Aptima qualitative HIV-1 RNA assay for diagnosis of human immunodeficiency virus infection in infants. J Clin Microbiol 51(12):4137–4140CrossRefGoogle Scholar
  66. 66.
    Lelie PN, van Drimmelen HA, Cuypers HT, Best SJ, Stramer SL, Hyland C et al (2010) Sensitivity of HCV RNA and HIV RNA blood screening assays. Transfusion 42(5):527–536CrossRefGoogle Scholar
  67. 67.
    (2010) WHO Guidelines Approved by the Guidelines Review Committee. WHO Recommendations on the Diagnosis of HIV Infection in Infants and Children. World Health Organization World Health Organization., GenevaGoogle Scholar
  68. 68.
    Hamlyn E, Jones V, Porter K, Fidler S (2010) Antiretroviral treatment of primary HIV infection to reduce onward transmission. Curr Opin HIV AIDS 5(4):283–290CrossRefPubMedGoogle Scholar
  69. 69.
    Dodd RY (2015) Transfusion-transmitted infections: testing strategies and residual risk. Isbt Science 9(1):1–5Google Scholar
  70. 70.
    Shyamala V (2015) Nucleic acid technology (NAT) testing for blood screening: impact of individual donation and Mini Pool-NAT testing on analytical sensitivity, screening sensitivity and clinical sensitivity. Isbt Science 9(2):315–324CrossRefGoogle Scholar
  71. 71.
    Van Laethem K, Beuselinck K, Van Dooren S, De Clercq E, Desmyter J, Vandamme AM (1998) Diagnosis of human immunodeficiency virus infection by a polymerase chain reaction assay evaluated in patients harbouring strains of diverse geographical origin. J Virol Methods 70(2):153–166CrossRefPubMedGoogle Scholar
  72. 72.
    Chudy M, Weber-Schehl M, Pichl L, Jork C, Kress J, Heiden M et al (2012) Blood screening nucleic acid amplification tests for human immunodeficiency virus type 1 may require two different amplification targets. Transfusion 52(2):431–439CrossRefPubMedGoogle Scholar
  73. 73.
    Margaritis AR, Brown SM, Seed CR, Kiely P, D'Agostino B, Keller AJ (2007) Comparison of two automated nucleic acid testing systems for simultaneous detection of human immunodeficiency virus and hepatitis C virus RNA and hepatitis B virus DNA. Transfusion 47(10):1783–1793CrossRefPubMedGoogle Scholar
  74. 74.
    Assal A, Barlet V, Deschaseaux M, Dupont I, Gallian P, Guitton C et al (2009) Comparison of the analytical and operational performance of two viral nucleic acid test blood screening systems: Procleix Tigris and cobas s 201. Transfusion 49(2):289–300CrossRefPubMedGoogle Scholar
  75. 75.
    Assal A, Barlet V, Deschaseaux M, Dupont I, Gallian P, Guitton C et al (2009) Sensitivity of two hepatitis B virus, hepatitis C virus (HCV), and human immunodeficiency virus (HIV) nucleic acid test systems relative to hepatitis B surface antigen, anti-HCV, anti-HIV, and p24/anti-HIV combination assays in seroconversion panels. Transfusion 49(2):301–310CrossRefPubMedGoogle Scholar
  76. 76.
    Grabarczyk P, van Drimmelen H, Kopacz A, Gdowska J, Liszewski G, Piotrowski D et al (2013) Head-to-head comparison of two transcription-mediated amplification assay versions for detection of hepatitis B virus, hepatitis C virus, and human immunodeficiency virus type 1 in blood donors. Transfusion 53(10 Pt 2):2512–2524CrossRefPubMedGoogle Scholar
  77. 77.
    Grabarczyk P, Koppelman M, Boland F, Sauleda S, Fabra C, Cambie G et al (2015) Inclusion of human immunodeficiency virus type 2 (HIV-2) in a multiplex transcription-mediated amplification assay does not affect detection of HIV-1 and hepatitis B and C virus genotypes: a multicenter performance evaluation study. Transfusion 55(9):2246–2255CrossRefPubMedGoogle Scholar
  78. 78.
    Heim A (2016) Evaluation of the Procleix Ultrio Elite Assay and the Panther-System for individual NAT screening of blood, hematopoietic stem cell, tissue and organ donors. Transfus Med Hemother 43(3):177–182CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Le Corfec E, Le Pont F, Tuckwell HC, Rouzioux C, Costagliola D (1999) Direct HIV testing in blood donations: variation of the yield with detection threshold and pool size. Transfusion 39(10):1141–1144CrossRefPubMedGoogle Scholar
  80. 80.
    Ha J, Park Y, Kim HS (2017) Evaluation of clinical sensitivity and specificity of hepatitis B virus (HBV), hepatitis C virus, and human immunodeficiency Virus-1 by cobas MPX: detection of occult HBV infection in an HBV-endemic area. J Clin Virol 96:60–63CrossRefPubMedGoogle Scholar
  81. 81.
    Migueles SA, Connors M (2010) Long-term nonprogressive disease among untreated HIV-infected individuals: clinical implications of understanding immune control of HIV. Jama 304(2):194–201CrossRefPubMedGoogle Scholar
  82. 82.
    Mendoza D, Johnson SA, Peterson BA, Natarajan V, Salgado M, Dewar RL et al (2012) Comprehensive analysis of unique cases with extraordinary control over HIV replication. Blood 119(20):4645–4655CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Cock KMD, Fowler MG, Mercier E, Vincenzi ID, Saba J, Hoff E et al (2000) Prevention of mother-to-child HIV transmission in resource-poor countries: translating research into policy and practice. Jama 283(9):1175–1182CrossRefPubMedGoogle Scholar
  84. 84.
    Luzuriaga K, Mofenson LM (2016) Challenges in the elimination of pediatric HIV-1 infection. N Engl J Med 374(8):761–770CrossRefPubMedGoogle Scholar
  85. 85.
    Canals F, Masia M, Gutierrez F (2018) Developments in early diagnosis and therapy of HIV infection in newborns. Expert Opin Pharmacother 19(1):13–25CrossRefPubMedGoogle Scholar
  86. 86.
    Stevens W, Sherman G, Downing R, Parsons LM, Ou CY, Crowley S et al (2008) Role of the laboratory in ensuring global access to ARV treatment for HIV-infected children: consensus statement on the performance of laboratory assays for early infant diagnosis. Open AIDS J 2:17–25CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Ou C-Y, Fiscus S, Ellenberger D, Parekh B, Korhonen C, Nkengasong J et al (2012) Early diagnosis of HIV infection in the breastfed infant. Adv Exp Med Biol 743(743):51–65CrossRefPubMedGoogle Scholar
  88. 88.
    Pierce VM, Neide B, Hodinka RL (2011) Evaluation of the Gen-Probe Aptima HIV-1 RNA qualitative assay as an alternative to Western blot analysis for confirmation of HIV infection. J Clin Microbiol 49(4):1642–1645CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Alvarez P, Prieto L, Martin L, Obiang J, Avedillo P, Vargas A et al (2017) Evaluation of four commercial virological assays for early infant HIV-1 diagnosis using dried blood specimens. Pediatr Res 81(1–1):80–87CrossRefPubMedGoogle Scholar
  90. 90.
    Ceffa S, Luhanga R, Andreotti M, Brambilla D, Erba F, Jere H et al (2016) Comparison of the Cepheid GeneXpert and Abbott M2000 HIV-1 real time molecular assays for monitoring HIV-1 viral load and detecting HIV-1 infection. J Virol Methods 229:35–39CrossRefPubMedGoogle Scholar
  91. 91.
    Hsiao NY, Dunning L, Kroon M, Myer L (2016) Laboratory evaluation of the Alere q point-of-care system for early infant HIV diagnosis. PLoS One 11(3):e0152672CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Koopman JS, Jacquez JA, Welch GW, Simon CP, Foxman B, Pollock SM et al (1997) The role of early HIV infection in the spread of HIV through populations. J Acquir Immune Defic Syndr Hum Retrovirol 14(3):249–258CrossRefPubMedGoogle Scholar
  93. 93.
    Brenner BG, Roger M, Routy JP, Moisi D, Ntemgwa M, Matte C et al (2007) High rates of forward transmission events after acute/early HIV-1 infection. J Infect Dis 195(7):951–959CrossRefPubMedGoogle Scholar
  94. 94.
    Bassett IV, Chetty S, Giddy J, Reddy S, Bishop K, Lu Z et al (2015) Screening for acute HIV infection in South Africa: finding acute and chronic disease. HIV Med 12(1):46–53CrossRefGoogle Scholar
  95. 95.
    Martin EG, Salaru G, Mohammed D, Coombs RW, Paul SM, Cadoff EM (2013) Finding those at risk: acute HIV infection in Newark, NJ. J Clin Virol 58:E24–E28CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Emerson B, Plough K (2013) Detection of acute HIV-1 infections utilizing NAAT technology in Dallas, Texas. J Clin Virol 58(Suppl 1):e48–e53CrossRefPubMedGoogle Scholar
  97. 97.
    Drancourt M, Michellepage A, Boyer S, Raoult D (2016) The point-of-care laboratory in clinical microbiology. Clin Microbiol Rev 29(3):429CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Engel N, Pant PN (2015) Qualitative research on point-of-care testing strategies and programs for HIV. Expert Rev Mol Diagn 15(1):71CrossRefPubMedGoogle Scholar
  99. 99.
    Chang M, Steinmetzer K, Raugi DN, Smith RA, Ba S, Sall F et al (2017) Detection and differentiation of HIV-2 using the point-of-care Alere q HIV-1/2 detect nucleic acid test. J Clin Virol 97:22–25CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Jani IV, Meggi B, Vubil A, Sitoe NE, Bhatt N, Tobaiwa O et al (2016) Evaluation of the whole-blood Alere Q NAT point-of-care RNA assay for HIV-1 viral load monitoring in a primary health care setting in Mozambique. J Clin Microbiol 54(8):2104–2108CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Scott L, Gous N, Carmona S, Stevens W (2015) Laboratory evaluation of the Liat HIV Quant (IQuum) whole-blood and plasma HIV-1 viral load assays for point-of-care testing in South Africa. J Clin Microbiol 53(5):1616–1621CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Murtagh M (2013) HIV / AIDS diagnostic technology landscape. 3rd editionGoogle Scholar
  103. 103.
    Pironti A, Walter H, Pfeifer N, Knops E, Lübke N, Büch J et al (2017) Determination of phenotypic resistance cutoffs from routine clinical data. J Acquir Immune Defic Syndr 74(5):e129–e137CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Tsai HC, Chen IT, Lee SS, Chen YS (2018) HIV-1 genotypic drug resistance in patients with virological failure to single-tablet antiretroviral regimens in southern Taiwan. Infection & Drug Resistance 11:1061CrossRefGoogle Scholar
  105. 105.
    Mayers DL, Baxter JD (2017) Clinical implications of HIV-1 drug resistance. In: Mayers DL, Sobel JD, Ouellette M, Kaye KS, Marchaim D (eds) Antimicrobial drug resistance: clinical and epidemiological aspects, Volume 2. Springer International Publishing, Cham, pp 1213–1225Google Scholar
  106. 106.
    Pattery T, Verlinden Y, De Wolf H, Nauwelaers D, Van Baelen K, Van Houtte M et al (2012) Development and performance of conventional HIV-1 phenotyping (Antivirogram(R)) and genotype-based calculated phenotyping assay (virco(R)TYPE HIV-1) on protease and reverse transcriptase genes to evaluate drug resistance. Intervirology 55(2):138–146CrossRefPubMedGoogle Scholar
  107. 107.
    Cahn P, Pozniak AL, Mingrone H, Shuldyakov A, Brites C, Andrade-Villanueva JF et al (2013) Dolutegravir versus raltegravir in antiretroviral-experienced, integrase-inhibitor-naive adults with HIV: week 48 results from the randomised, double-blind, non-inferiority SAILING study. Lancet 382(9893):700–708CrossRefPubMedGoogle Scholar
  108. 108.
    Westen GJPV, Hendriks A, Wegner JK, Ijzerman AP, Vlijmen HWTV, Bender A (2013) Significantly improved HIV inhibitor efficacy prediction employing proteochemometric models generated from antivirogram data. PLoS Comput Biol 9(2(2013-2-21)):e1002899CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Mohamed S, Penaranda G, Gonzalez D, Camus C, Khiri H, Boulmé R et al (2014) Clinical impact of ultra deep versus Sanger sequencing detection of minority mutations on HIV-1 drug resistance genotype interpretation after virological failure. Aids 14(S2):1–1Google Scholar
  110. 110.
    Mekue MLC, Hélène P, Angélique NM, Donato K, Dieu LJD, François-Xavier MK et al (2015) LETTER TO THE EDITOR Performance of the ViroSeq® HIV-1 genotyping system V2.0 in Central Africa. Open Aids Journal 9(1):9–13CrossRefGoogle Scholar
  111. 111.
    Paraschiv S, Otelea D, Baicus C, Tinischi M, Costache M, Neaga E (2009) Nucleoside reverse transcriptase inhibitor resistance mutations in subtype F1 strains isolated from heavily treated adolescents in Romania. Int J Infect Dis 13(1):81–89CrossRefPubMedGoogle Scholar
  112. 112.
    Stelzl E, Proll J, Bizon B, Niklas N, Danzer M, Hackl C et al (2011) Human immunodeficiency virus type 1 drug resistance testing: evaluation of a new ultra-deep sequencing-based protocol and comparison with the TRUGENE HIV-1 genotyping kit. J Virol Methods 178(1–2):94–97CrossRefPubMedGoogle Scholar
  113. 113.
    Duarte HA, Panpradist N, Beck IA, Lutz B, Lai J, Kanthula RM et al (2017) Current status of point-of-care testing for human immunodeficiency virus drug resistance. J Infect Dis 216(suppl_9):S824–s828CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Metzner KJ, Rauch P, Braun P, Knechten H, Ehret R, Korn K et al (2011) Prevalence of key resistance mutations K65R, K103N, and M184V as minority HIV-1 variants in chronically HIV-1 infected, treatment-naive patients. J Clin Virol 50(2):156–161CrossRefPubMedGoogle Scholar
  115. 115.
    Grant RM, Liegler T, Defechereux P, Kashuba AD, Taylor D, Abdelmohsen M et al (2015) Drug resistance and plasma viral RNA level after ineffective use of oral pre-exposure prophylaxis in women. Aids 29(3):331CrossRefPubMedGoogle Scholar
  116. 116.
    Zhang G, Cai F, de Rivera IL, Zhou Z, Zhang J, Nkengasong J et al (2016) Simultaneous detection of major drug resistance mutations of HIV-1 subtype B viruses from dried blood spot specimens by multiplex allele-specific assay. J Clin Microbiol 54(1):220–222CrossRefPubMedGoogle Scholar
  117. 117.
    Clutter DS, Rojas Sanchez P, Rhee SY, Shafer RW (2016) Genetic variability of HIV-1 for drug resistance assay development. Viruses 8(2)Google Scholar
  118. 118.
    Quinones-Mateu ME, Avila S, Reyes-Teran G, Martinez MA (2014) Deep sequencing: becoming a critical tool in clinical virology. J Clin Virol 61(1):9–19CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Thiam M, Diop-Ndiaye H, Kebe K, Vidal N, Diakhate-Lô R, Diouara AA et al (2013) Performance of the ViroSeq HIV-1 genotyping system V2.0 on HIV-1 strains circulating in Senegal. J Virol Methods 188(1–2):97–103CrossRefPubMedGoogle Scholar
  120. 120.
    Van Laethem K, Theys K, Vandamme AM (2015) HIV-1 genotypic drug resistance testing: digging deep, reaching wide? Curr Opin Virol 14:16–23CrossRefPubMedGoogle Scholar
  121. 121.
    Johnson EO, Hancock DB, Gaddis NC, Levy JL, Page G, Novak SP et al (2015) Novel genetic locus implicated for HIV-1 acquisition with putative regulatory links to HIV replication and infectivity: a genome-wide association study. PLoS One 10(3):e0118149CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    McLaren PJ, Pulit SL, Gurdasani D, Bartha I, Shea PR, Pomilla C et al (2017) Evaluating the impact of functional genetic variation on HIV-1 control. J Infect Dis 216(9):1063–1069CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Skerlj RT, Bridger GJ, Kaller A, Mceachern EJ, Crawford JB, Zhou Y et al (2010) Discovery of novel small molecule orally bioavailable C-X-C chemokine receptor 4 antagonists that are potent inhibitors of T-tropic (X4) HIV-1 replication. J Med Chem 53(8):3376–3388CrossRefPubMedGoogle Scholar
  124. 124.
    Tsukamoto T (2018) Transcriptional gene silencing limits CXCR4-associated depletion of bone marrow CD34+ cells in HIV-1 infection. Aids 32(13):1737–1747CrossRefPubMedGoogle Scholar
  125. 125.
    Liu Z, Chen S, Jin X, Wang Q, Yang K, Li C et al (2017) Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4 + T cells from HIV-1 infection. Cell Biosci 7(1):47CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    D'Antoni ML, Paul RH, Mitchell BI, Kohorn L, Fischer L, Lefebvre E et al (2018) Improved cognitive performance and reduced monocyte activation in virally suppressed chronic HIV following dual CCR2 and CCR5 antagonism. J Acquir Immune Defic Syndr 79(1):1CrossRefGoogle Scholar
  127. 127.
    Ioannidis JPA, Rosenberg PS, Goedert JJ, Ashton LJ, Benfield TL, Buchbinder SP et al (2001) Effects of CCR5-Δ 32, CCR2-64I, and SDF-1 3′a alleles on HIV-1 disease progression: an international meta-analysis of individual-patient data. Ann Intern Med 135(9):782–795CrossRefPubMedGoogle Scholar
  128. 128.
    Verheyen J, Thielen A, Lübke N, Dirks M, Widera M, Dittmer U, et al (2018) Rapid rebound of a preexisting CXCR4-tropic HIV variant after allogeneic transplantation with CCR5 delta32 homozygous stem cells. Clinical Infectious Diseases An Official Publication of the Infectious Diseases Society of AmericaGoogle Scholar
  129. 129.
    Mori M, Wichukchinda N, Miyahara R, Rojanawiwat A, Pathipvanich P, Maekawa T et al (2014) HLA-B*35: 05 is a protective allele with a unique structure among HIV-1 CRF01_AE-infected Thais, in whom the B*57 frequency is low. Aids 28(7):959–967CrossRefPubMedGoogle Scholar
  130. 130.
    Ragoussis J (2009) Genotyping technologies for genetic research. Annu Rev Genomics Hum Genet 10(1):117–133CrossRefPubMedGoogle Scholar
  131. 131.
    Dumoulin A, Hirsch HH (2011) Reevaluating and optimizing polyomavirus BK and JC real-time PCR assays to detect rare sequence polymorphisms. J Clin Microbiol 49(4):1382CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Komninakis S, Fukumori L, Alcalde R, Cortina M, Abdala L, Brito A et al (2007) Techniques used to identify the Brazilian variant of HIV-1 subtype B. Braz J Med Biol Res 40(3):301CrossRefPubMedGoogle Scholar
  133. 133.
    Devadas K, Biswas S, Haleyurgirisetty M, Wood O, Ragupathy V, Lee S et al (2016) Analysis of host gene expression profile in HIV-1 and HIV-2 infected T-cells. PLoS One 11(1):e0147421CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Lynch HE, Sempowski GD (2013) Molecular measurement of T cell receptor excision circles. Methods Mol Biol 979(979):147CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Julia D, Nienke V, Tendai M, Bregje DBA, Otto SA, Hazenberg MD et al (2016) Reconciling longitudinal naive T-cell and TREC dynamics during HIV-1 infection. PLoS One 11(3):e0152513CrossRefGoogle Scholar
  136. 136.
    Touloumi G, Pantazis N, Karafoulidou A, Mandalaki T, Goedert JJ, Kostrikis LG et al (2004) Changes in T cell receptor excision DNA circle (TREC) levels in HIV type 1-infected subjects pre- and post-highly active antiretroviral therapy. Aids Research & Human Retroviruses 20(1):47–54CrossRefGoogle Scholar
  137. 137.
    Vogelstein B, Kinzler KW (1999) Digital PCR. Proc Natl Acad Sci U S A 96(16):9236–9241CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Jones RB, Mueller S, O'Connor R, Rimpel K, Sloan DD, Karel D et al (2016) A subset of latency-reversing agents expose HIV-infected resting CD4+ T-cells to recognition by cytotoxic T-lymphocytes. PLoS Pathog 12(4):e1005545CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Yucha RW, Hobbs KS, Hanhauser E, Hogan LE, Nieves W, Ozen MO et al (2017) High-throughput characterization of HIV-1 reservoir reactivation using a single-cell-in-droplet PCR assay. Ebiomedicine 20(C):217–229CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Hancock G, Morónlópez S, Kopycinski J, Puertas MC, Giannoulatou E, Rose A et al (2017) Evaluation of the immunogenicity and impact on the latent HIV-1 reservoir of a conserved region vaccine, MVA.HIVconsv, in antiretroviral therapy-treated subjects. Journal of the International Aids Society 20(1):1CrossRefGoogle Scholar
  141. 141.
    Mothe B, Climent N, Plana M, Rosà M, Luis J, Nez J et al (2015) Safety and immunogenicity of a modified vaccinia Ankara-based HIV-1 vaccine (MVA-B) in HIV-1-infected patients alone or in combination with a drug to reactivate latent HIV-1. J Antimicrob Chemother 70(6):1833–1842PubMedGoogle Scholar
  142. 142.
    Goo L, Jalalianlechak Z, Richardson BA, Overbaugh J (2012) A combination of broadly neutralizing HIV-1 monoclonal antibodies targeting distinct epitopes effectively neutralizes variants found in early infection. J Virol 86(19):10857–10861CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Mccoy LE, Weiss RA (2013) Neutralizing antibodies to HIV-1 induced by immunization. J Exp Med 210(2):209–223CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Stahl T, Böhme MU, Kröger N, Fehse B (2015) Digital PCR to assess hematopoietic chimerism after allogeneic stem cell transplantation. Exp Hematol 43(6):462–468.e461CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Rosas-Umbert M, Mothe B, Noguera-Julian M, Bellido R, Puertas MC, Carrillo J et al (2017) Virological and immunological outcome of treatment interruption in HIV-1-infected subjects vaccinated with MVA-B. PLoS One 12(9):e0184929CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Maria JB, Enrique M-G, Florencia P, Zhengyu O, Hong S, Jonathan ZL et al (2014) Long-term antiretroviral treatment initiated at primary HIV-1 infection affects the size, composition, and decay kinetics of the reservoir of HIV-1-infected CD4 T cells. J Virol 88(17):10056–10065CrossRefGoogle Scholar
  147. 147.
    Chaillon A, Gianella S, Lada SM, Perez-Santiago J, Jordan P, Ignacio C et al (2017) Size, composition, and evolution of HIV DNA populations during early antiretroviral therapy and intensification with Maraviroc. J Virol 92(3):JVI.01589–JVI.01517CrossRefGoogle Scholar
  148. 148.
    Bosman KJ, Nijhuis M, van Ham PM, Wensing AM, Vervisch K, Vandekerckhove L et al (2015) Comparison of digital PCR platforms and semi-nested qPCR as a tool to determine the size of the HIV reservoir. Sci Rep 5(2):13811CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Rutsaert S, Bosman K, Trypsteen W, Nijhuis M, Vandekerckhove L (2018) Digital PCR as a tool to measure HIV persistence. Retrovirology 15(1):16CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Strain MC, Lada SM, Luong T, Rought SE, Gianella S, Terry VH et al (2013) Highly precise measurement of HIV DNA by droplet digital PCR. PLoS One 8(4):e55943CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Henrich TJ, Gallien S, Li JZ, Pereyra F, Kuritzkes DR (2012) Low-level detection and quantitation of cellular HIV-1 DNA and 2-LTR circles using droplet digital PCR. J Virol Methods 186(1–2):68–72CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Ho Y, Shan L, Hosmane Nina N, Wang J, Laskey Sarah B, Rosenbloom Daniel IS et al (2013) Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155(3):540–551CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Samson M, Labbe O, Mollereau C, Vassart G, Parmentier M (1996) Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry 35(11):3362–3367CrossRefPubMedGoogle Scholar
  154. 154.
    Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K et al (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360(7):692–698CrossRefPubMedGoogle Scholar
  155. 155.
    Soriano V (2017) Hot news: gene therapy with CRISPR/Cas9 coming to age for HIV cure. AIDS Rev 19(3):167–172PubMedGoogle Scholar
  156. 156.
    Zulfiqar HF, Javed A, Sumbal, Afroze B, Ali Q, Akbar K et al (2017) HIV diagnosis and treatment through advanced technologies. Front Public Health 5:32CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Zhu W, Lei R, Duff YL, Li J, Guo F, Wainberg MA et al (2015) The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology 12(1):22CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Wang Z, Pan Q, Gendron P, Zhu W, Guo F, Cen S et al (2016) CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep 15(3):481–489CrossRefPubMedGoogle Scholar
  159. 159.
    Hütter G, Bodor J, Ledger S, Boyd M, Millington M, Tsie M et al (2015) CCR5 targeted cell therapy for HIV and prevention of viral escape. Viruses 7(8):4186–4203CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Center for Clinical LaboratoriesBeijing Hospital, National Center of GerontologyBeijingPeople’s Republic of China
  2. 2.Beijing Engineering Research Center of Laboratory MedicineBeijing HospitalBeijingPeople’s Republic of China
  3. 3.Graduate School, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingPeople’s Republic of China

Personalised recommendations