Advertisement

Detection of optrA-positive enterococci clinical isolates in Belgium

  • M. Angeles ArgudínEmail author
  • S. Youzaga
  • M. Dodémont
  • A. Heinrichs
  • S. Roisin
  • A. Deplano
  • C. Nonhoff
  • M. Hallin
Letter to the Editor
  • 78 Downloads

Dear Editor,

Linezolid, the first member of the oxazolidinone family, is one of the major antimicrobial agents used for the treatment of vancomycin-resistant enterococcus (VRE) infections. This antibiotic binds to the domain V of the 23S ribosomal RNA (rRNA) of the 50S subunit inhibiting the bacterial protein synthesis. Diverse mechanisms conferring linezolid resistance have been described in enterococci, including point mutations in genes encoding 23S rRNA, mutations in ribosomal proteins L3 and/or L4, or the presence of the plasmid-borne ribosomal methyltransferase gene cfr or its variant cfr(B) [1, 2]. The new variant cfr(C) has only been described in Clostridium [3] and Campylobacter [4]. Recently, new oxazolidinone resistance genes coding for an ABC transporter (optrA) and for an ARE ABC-F family protein (poxtA) have been described. Both genes have been detected in plasmids and/or transposons in enterococci and/or staphylococci of human and animal origin [5, 6, 7, 8, 9]. Most...

Notes

Acknowledgments

We would like to thank the Veterinary and Agrochemical Research Centre (CODA-CERVA, Belgium), the National Reference Centre for Staphylococci and Enterococci of the Institute Robert Koch (Germany), the Nation Food Institute of the Technical University of Denmark (Denmark), the “Centre National de Référence des Staphylocoques” of “Hospices Civils de Lyon” (France) and the University of Florence (Italy) for the supply of positive control strains for this study.

Financial support

This study was supported by internal funding.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study formal consent is not required.

References

  1. 1.
    Bi R, Qin T, Fan W, Ma P, Gu B (2017) The emerging problem of linezolid-resistant enterococcus. J Glob Antimicrob Resist 13:11–19Google Scholar
  2. 2.
    Deshpande LM, Ashcraft DS, Kahn HP, Pankey G, Jones RN, Farrell DJ, Mendes RE (2015) Detection of a new cfr-like gene, cfr(B), in Enterococcus faecium isolates recovered from human specimens in the United States as part of the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 59(10):6256–6261CrossRefGoogle Scholar
  3. 3.
    Candela T, Marvaud JC, Nguyen TK, Lambert T (2017) A cfr-like gene cfr(C) conferring linezolid resistance is common in Clostridium difficile. Int J Antimicrob Agents 50(3):496–500CrossRefGoogle Scholar
  4. 4.
    Tang Y, Dai L, Sahin O, Wu Z, Liu M, Zhang Q (2017) Emergence of a plasmid-borne multidrug resistance gene cfr(C) in foodborne pathogen Campylobacter. J Antimicrob Chemother 72(6):1581–1588CrossRefGoogle Scholar
  5. 5.
    Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T, Wang D, Wang Z, Shen Y, Li Y, Fessler AT, Wu C, Yu H, Deng X, Xia X, Shen J (2015) A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother 70(8):2182–2190CrossRefGoogle Scholar
  6. 6.
    Lazaris A, Coleman DC, Kearns AM, Pichon B, Kinnevey PM, Earls MR, Boyle B, O'Connell B, Brennan GI, Shore AC (2017) Novel multiresistance cfr plasmids in linezolid-resistant methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (VRE) from a hospital outbreak: co-location of cfr and optrA in VRE. J Antimicrob Chemother 72(12):3252–3257CrossRefGoogle Scholar
  7. 7.
    Sun C, Zhang P, Ji X, Fan R, Chen B, Wang Y, Schwarz S, Wu C (2018) Presence and molecular characteristics of oxazolidinone resistance in staphylococci from household animals in rural China. J Antimicrob Chemother 73(5):1194–1200Google Scholar
  8. 8.
    Antonelli A, D’Andrea MM, Brenciani A, Galeotti CL, Morroni G, Pollini S, Varaldo PE, Rossolini GM (2018) Characterization of poxtA, a novel phenicol-oxazolidinone-tetracycline resistance gene from an MRSA of clinical origin. J Antimicrob Chemother.  https://doi.org/10.1093/jac/dky088
  9. 9.
    Brenciani A, Fioriti S, Morroni G, Cucco L, Morelli A, Pezzotti G, Paniccia M, Antonelli A, Magistrali CF, Rossolini GM, Giovanetti E (2018) Detection in Italy of a porcine Enterococcus faecium isolate carrying the novel phenicol-oxazolidinone-tetracycline resistance gene poxtA. J Antimicrob Chemother.  https://doi.org/10.1093/jac/dky505
  10. 10.
    Cui L, Wang Y, Lv Y, Wang S, Song Y, Li Y, Liu J, Xue F, Yang W, Zhang J (2016) Nationwide surveillance of novel oxazolidinone resistance gene optrA in enterococcus isolates in China from 2004 to 2014. Antimicrob Agents Chemother 60(12):7490–7493Google Scholar
  11. 11.
    Valentin T, Leitner E, Valentin A, Krause R, Hopkins K, Meunier D, Woodford N, Zollner-Schwetz I (2016) Clinical Enterococcus faecalis isolate carrying the novel oxazolidinone resistance gene optrA identified in Austria. ECCMID, Amsterdam, The Netherlands, p PLB46BGoogle Scholar
  12. 12.
    Vorobieva V, Roer L, Justesen US, Hansen F, Frimodt-Moller N, Hasman H, Hammerum AM (2017) Detection of the optrA gene in a clinical ST16 Enterococcus faecalis isolate in Denmark. J Glob Antimicrob Resist 10:12–13CrossRefGoogle Scholar
  13. 13.
    Mendes RE, Deshpande L, Streit JM, Sader HS, Castanheira M, Hogan PA, Flamm RK (2018) ZAAPS programme results for 2016: an activity and spectrum analysis of linezolid using clinical isolates from medical centres in 42 countries. J Antimicrob Chemother.  https://doi.org/10.1093/jac/dky099
  14. 14.
    Bender JK, Fleige C, Lange D, Klare I, Werner G (2018) Rapid emergence of highly variable and transferable oxazolidinone and phenicol resistance gene optrA in German Enterococcus spp. clinical isolates. Int J Antimicrob Agents 52(6):819–827CrossRefGoogle Scholar
  15. 15.
    Brenciani A, Morroni G, Vincenzi C, Manso E, Mingoia M, Giovanetti E, Varaldo PE (2016) Detection in Italy of two clinical Enterococcus faecium isolates carrying both the oxazolidinone and phenicol resistance gene optrA and a silent multiresistance gene cfr. J Antimicrob Chemother 71(4):1118–1119CrossRefGoogle Scholar
  16. 16.
    Morroni G, Brenciani A, Antonelli A, D'Andrea MM, Di Pilato V, Fioriti S, Mingoia M, Vignaroli C, Cirioni O, Biavasco F, Varaldo PE, Rossolini GM, Giovanetti E (2018) Characterization of a multiresistance plasmid carrying the optrA and cfr resistance genes from an Enterococcus faecium clinical isolate. Front Microbiol 9:2189CrossRefGoogle Scholar
  17. 17.
    Gawryszewska I, Zabicka D, Hryniewicz W, Sadowy E (2017) Linezolid-resistant enterococci in polish hospitals: species, clonality and determinants of linezolid resistance. Eur J Clin Microbiol Infect Dis 36(7):1279–1286CrossRefGoogle Scholar
  18. 18.
    Camara J, Camoez M, Tubau F, Pujol M, Ayats J, Ardanuy C, Dominguez MA (2019) Detection of the novel optrA gene among linezolid-resistant enterococci in Barcelona, Spain. Microb Drug Resist 25(1):87–93CrossRefGoogle Scholar
  19. 19.
    Deshpande LM, Castanheira M, Flamm RK, Mendes RE (2018) Evolving oxazolidinone resistance mechanisms in a worldwide collection of enterococcal clinical isolates: results from the SENTRY antimicrobial surveillance program. J Antimicrob Chemother 73(9):2314–2322Google Scholar
  20. 20.
    HPS (2016) Oxazolidinone-resistance due to optrA in Enterococcus faecalis. HPS Weekly Rep 50(29). Available in: https://www.hps.scot.nhs.uk/haiic/amr/wrdetail.aspx?id=68781&wrtype=2. Accessed 2018
  21. 21.
    Loens K, Matheeussen V, Verlinden A, Margareta Ieven M, Yusuf E, Xavier BB, Malhotra-Kumar S, Goossens H (2017) Rare mechanisms of resistance in Belgian enterococci identified by WGS. 27th European Congress Of Clinical Microbiology And Infectious Diseases, Vienna, Austria, p P1376Google Scholar
  22. 22.
    EUCAST (2018) Breakpoint tables for interpretation of MICs and zone diameters, Version 8.0Google Scholar
  23. 23.
    Kehrenberg C, Schwarz S (2006) Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob Agents Chemother 50(4):1156–1163CrossRefGoogle Scholar
  24. 24.
    MLST E. faecalis database, http://efaecalis.mlst.net. Accessed Dec 2018
  25. 25.
    MLST E. faecium database, http://efaecium.mlst.net. Accessed Dec 2018
  26. 26.
    Enterococcus faecalis MLST website. University of Oxford, https://pubmlst.org/efaecalis. Accessed Dec 2018
  27. 27.
    Ben Said L, Klibi N, Lozano C, Dziri R, Ben Slama K, Boudabous A, Torres C (2015) Diversity of enterococcal species and characterization of high-level aminoglycoside resistant enterococci of samples of wastewater and surface water in Tunisia. Sci Total Environ 530-531:11–17CrossRefGoogle Scholar
  28. 28.
    He T, Shen Y, Schwarz S, Cai J, Lv Y, Li J, Fessler AT, Zhang R, Wu C, Shen J, Wang Y (2016) Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin. J Antimicrob Chemother 71(6):1466–1473CrossRefGoogle Scholar
  29. 29.
    Willems RJ, Hanage WP, Bessen DE, Feil EJ (2011) Population biology of gram-positive pathogens: high-risk clones for dissemination of antibiotic resistance. FEMS Microbiol Rev 35(5):872–900CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB) Site Anderlecht, Hôpital Erasme-Cliniques universitaires de BruxellesUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations