Advertisement

Comparison of three multiplex real-time PCR assays for detection of enteric viruses in patients with diarrhea

  • Jari J. HirvonenEmail author
Original Article

Abstract

In this study, the usability and performance of three commercially available multiplex real-time RT-PCR assays for the detection of major enteric viruses were investigated. In total, 481 fecal specimens were analyzed using the Allplex™ GI Virus Assay, the Rida®Gene Viral Stool Panel I, and the FTD Viral Gastroenteritis. The overall agreement between the assays was 99.9%. Despite convergent analytical performance, differences between the multiplex RT-PCR assays were apparent when considering their suitability for routine diagnostics.

Keywords

Gastroenteritis Enteric viruses Diarrhea Molecular diagnostics 

Notes

Acknowledgements

Siru Koskinen, Linda Luoma, and Hanna Saari are gratefully acknowledged for their help in sample analyses.

Funding

This study was carried out alongside routine diagnostics.

Compliance with ethical standards

Conflict of interest

The author reports no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author. There were no requirements for informed consent.

References

  1. 1.
    Bartsch SM, Lopman BA, Ozawa S et al (2016) Global economic burden of norovirus gastroenteritis. PLoS One 11(4):e0151219.  https://doi.org/10.1371/journal.pone.0151219 CrossRefGoogle Scholar
  2. 2.
    Wikswo ME, Kambhampati A, Shioda K et al (2015) Outbreaks of acute gastroenteritis transmitted by person-to-person contact, environmental contamination, and unknown modes of transmission--United States, 2009-2013. MMWR Surveill Summ 64(12):1–16.  https://doi.org/10.15585/mmwr.mm6412a1 CrossRefGoogle Scholar
  3. 3.
    Thongprachum A, Takanashi S, Kalesaran AF et al (2015) Four-year study of viruses that cause diarrhea in Japanese pediatric outpatients. J Med Virol 87(7):1141–1148.  https://doi.org/10.1002/jmv.24155 CrossRefGoogle Scholar
  4. 4.
    Räsänen S, Lappalainen S, Kaikkonen S et al (2010) Mixed viral infections causing acute gastroenteritis in children in a waterborne outbreak. Epidemiol Infect 138(9):1227–1234.  https://doi.org/10.1017/S0950268809991671 CrossRefGoogle Scholar
  5. 5.
    Pang XL, Preiksaitis JK, Lee B (2005) Multiplex real time RT-PCR for the detection and quantitation of norovirus genogroups I and II in patients with acute gastroenteritis. J Clin Virol 33(2):168–171CrossRefGoogle Scholar
  6. 6.
    Chan MC, Sung JJ, Lam RK et al (2006) Sapovirus detection by quantitative real-time RT-PCR in clinical stool specimens. J Virol Methods 134(1–2):146–153.  https://doi.org/10.1016/j.jviromet.2005.12.013 CrossRefGoogle Scholar
  7. 7.
    Logan C, O'Leary JJ, O'Sullivan N (2006) Real-time reverse transcription-PCR for detection of rotavirus and adenovirus as causative agents of acute viral gastroenteritis in children. J Clin Microbiol 44(9):3189–3195.  https://doi.org/10.1128/JCM.00915-06 CrossRefGoogle Scholar
  8. 8.
    Dunbar NL, Bruggink LD, Marshall JA (2014) Evaluation of the RIDAGENE real-time PCR assay for the detection of GI and GII norovirus. Diagn Microbiol Infect Dis 79(3):317–321.  https://doi.org/10.1016/j.diagmicrobio.2014.03.017 CrossRefGoogle Scholar
  9. 9.
    McAuliffe GN, Anderson TP, Stevens M et al (2013) Systematic application of multiplex PCR enhances the detection of bacteria, parasites, and viruses in stool samples. J Inf Secur 67(2):122–129.  https://doi.org/10.1016/j.jinf.2013.04.009 Google Scholar
  10. 10.
    Hyun J, Ko DH, Lee SK et al (2018) Evaluation of a new multiplex real-time PCR assay for detecting gastroenteritis-causing viruses in stool samples. Ann Lab Med 38(3):220–225.  https://doi.org/10.3343/alm.2018.38.3.220 CrossRefGoogle Scholar
  11. 11.
    Verheyen J, Kaiser R, Bozic M et al (2012) Extraction of viral nucleic acids: comparison of five automated nucleic acid extraction platforms. J Clin Virol 54(3):255–259.  https://doi.org/10.1016/j.jcv.2012.03.008 CrossRefGoogle Scholar
  12. 12.
    Moudjahed H, Pinçon C, Alidjinou K et al (2017) Comparison of three molecular assays for detection of enteric viruses in stool samples. J Virol Methods 250:55–58.  https://doi.org/10.1016/j.jviromet.2017.09.026 CrossRefGoogle Scholar
  13. 13.
    Maunula L, Von Bonsdorff CH (2005) Norovirus genotypes causing gastroenteritis outbreaks in Finland 1998-2002. J Clin Virol 34(3):186–194CrossRefGoogle Scholar
  14. 14.
    Puustinen L, Blazevic V, Salminen M et al (2011) Noroviruses as a major cause of acute gastroenteritis in children in Finland, 2009-2010. Scand J Infect Dis 43(10):804–808.  https://doi.org/10.3109/00365548.2011.588610 CrossRefGoogle Scholar
  15. 15.
    Iturriza-Gómara M, Lopman B (2014) Norovirus in healthcare settings. Curr Opin Infect Dis 27(5):437–443.  https://doi.org/10.1097/QCO.0000000000000094 CrossRefGoogle Scholar
  16. 16.
    Guo L, Song J, Xu X et al (2009) Genetic analysis of norovirus in children affected with acute gastroenteritis in Beijing, 2004–2007. J Clin Virol 44:94–98.  https://doi.org/10.1016/j.jcv.2008.10.002 CrossRefGoogle Scholar
  17. 17.
    Eckardt AJ, Baumgart DC (2011) Viral gastroenteritis in adults. Recent Pat Antiinfect Drug Discov 6(1):54–63.  https://doi.org/10.2174/157489111794407877 CrossRefGoogle Scholar
  18. 18.
    Dennehy PH (2011) Viral gastroenteritis in children. Pediatr Infect Dis J 30(1):63–64.  https://doi.org/10.1097/INF.0b013e3182059102 CrossRefGoogle Scholar
  19. 19.
    Walter JE, Mitchell DK (2003) Astrovirus infection in children. Curr Opin Infect Dis 16(3):247–253.  https://doi.org/10.1097/01.qco.0000073775.11390.60 CrossRefGoogle Scholar
  20. 20.
    Jalava K, Rintala H, Ollgren J et al (2014) Novel microbiological and spatial statistical methods to improve strength of epidemiological evidence in a community-wide waterborne outbreak. PLoS One 22(9(8)):e104713.  https://doi.org/10.1371/journal.pone.0104713 CrossRefGoogle Scholar
  21. 21.
    Cieślik-Tarkota R, Albertyńska M, Rozwadowska B et al (2017) Outbreaks of nosocomial infections in Poland in the years 2011-2015. Przegl Epidemiol 71(2):199–205Google Scholar
  22. 22.
    Chernyshova LI, Radionova NM, Demchyshyna IV, Kotlik LS, Sadkova OB, Samoilovich EO, Semeiko GV, Daniels DS, Cohen AL, Aliabadi N (2017) Observations on the epidemiology of rotavirus infection among hospitalized children younger than 5 years in 2 Ukrainian hospitals, 2007-2015. Vaccine.  https://doi.org/10.1016/j.vaccine.2017.11.044
  23. 23.
    Kota M, Bino S, Delogu R et al (2014) Epidemiology of rotavirus diarrhoea in Albania. Arch Virol 159(9):2491–2495.  https://doi.org/10.1007/s00705-014-2093-4 CrossRefGoogle Scholar
  24. 24.
    Hemming M, Räsänen S, Huhti L et al (2013) Major reduction of rotavirus, but not norovirus, gastroenteritis in children seen in hospital after the introduction of RotaTeq vaccine into the National Immunization Programme in Finland. Eur J Pediatr 172(6):739–746.  https://doi.org/10.1007/s00431-013-1945-3 CrossRefGoogle Scholar
  25. 25.
    Hemming-Harlo M, Markkula J, Huhti L et al (2016) Decrease of rotavirus gastroenteritis to a low level without resurgence for five years after universal RotaTeq vaccination in Finland. Pediatr Infect Dis J 35(12):1304–1308CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fimlab LaboratoriesTampereFinland

Personalised recommendations