Advertisement

Performance of rapid antimicrobial susceptibility testing by disk diffusion on MHR-SIR agar directly on urine specimens

  • Claire Périllaud-Dubois
  • Benoît Pilmis
  • Julien Diep
  • Gauthier Péan de Ponfilly
  • Simon Perreau
  • Louise Ruffier d’Epenoux
  • Assaf Mizrahi
  • Carine Couzigou
  • Barbara Vidal
  • Alban Le Monnier
  • Jean-Claude Nguyen VanEmail author
Original Article
  • 108 Downloads

Abstract

The standard method for the diagnosis of urinary tract infections is urine culture that requires 18–48 h for the identification of the bacteria and an additional 24 h until the results of antimicrobial susceptibility testing (AST) are available. We evaluated here a rapid AST method by disc diffusion performed directly on urine samples with a delay of 8 h. A total of 245 urine samples with monobacterial Gram negative observed on microscopy were tested in parallel by two AST methods. Rapid AST method was performed directly on urine samples using Rapid Mueller-Hinton (MHR-SIR) with 8-h incubation before reading and standard method was performed as usual. We compared the categorical agreement and the correlation between the diameters obtained by standard method and by MHR-SIR directly on urine samples. Over the 5285 tested combinations, we observed 5172 (97.9%) categorical agreement, 82 (1.5%) minor errors, 17 (0.3%) major errors, and 14 (0.3%) very major errors. Our results showed an excellent categorical agreement and correlations between diameters for MHR-SIR and standard methods. MHR-SIR performed directly on urine samples with monomicrobial Enterobacteriacae can predict the result of overall AST profile in 8 h with reliable results. The main advantage of MHR-SIR is that it offers the possibility of obtaining results 40 h earlier than conventional AST. The cost is estimated for less than 6 USD for 16 antibiotics, chosen by the microbiologist.

Keywords

MHR-SIR Direct AST Rapid AST Urinary tract infections 

Notes

Acknowledgments

We gratefully acknowledge Erika Costanzo and Christian Curel (i2a) for providing reagents and technical assistance. We would like to thank the entire Clinical Microbiology team and especially Jean-Luc Gestin for his help in setting the SIRSCAN parameters.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10096_2018_3413_MOESM1_ESM.docx (356 kb)
ESM 1 (DOCX 355 kb)

References

  1. 1.
    Bonnet R et al (2015) Comité de l’antibiogramme de la Société Française de Microbiologie. CASFM 2015 - V2. http://www.sfm-microbiologie.org/UserFiles/files/casfm/CASFMV2_030915.pdf. Accessed 10 29 2018
  2. 2.
    Caron F et al (2018) Practice guidelines for the management of adult community-acquired urinary tract infections. Méd Mal Infect 48(5):327–358Google Scholar
  3. 3.
    Laxminarayan R et al (2013) Antibiotic resistance—the need for global solutions. Lancet Infect Dis 13(12):1057–1098Google Scholar
  4. 4.
    ECDC (2016) Antimicrobial resistance surveillance in Europe. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net)Google Scholar
  5. 5.
    Observatoire National de l’Epidémiologie de la Résistance Bactérienne aux Antibiotiques (ONERBA) (2015) Rapport d’activité annuelGoogle Scholar
  6. 6.
    Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method, Microbiol. Centen. Perspect. ASM Press, Washington, D.C., pp 40–45Google Scholar
  7. 7.
    EUCAST European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters Version 7.1, valid from 2017-03-10Google Scholar
  8. 8.
    Johnson JR, Tiu FS, Stamm WE (1995) Direct antimicrobial susceptibility testing for acute urinary tract infections in women. J Clin Microbiol 33(9):2316–2323Google Scholar
  9. 9.
    Klein Breteler KB, Rentenaar RJ, Verkaart G, Sturm PDJ (2011) Performance and clinical significance of direct antimicrobial susceptibility testing on urine from hospitalized patients. Scand J Infect Dis 43(10):771–776Google Scholar
  10. 10.
    Zboromyrska Y et al (2016) Development of a new protocol for rapid bacterial identification and susceptibility testing directly from urine samples. Clin Microbiol Infect 22(6):561.e1–561.e6Google Scholar
  11. 11.
    Gallah S, Decre D, Genel N, Arlet G (2014) The β-LACTA test for direct detection of extended-spectrum-β-lactamase-producing Enterobacteriaceae in urine. J Clin Microbiol 52(10):3792–3794Google Scholar
  12. 12.
    Amzalag J, Mizrahi A, Naouri D, Nguyen JC, Ganansia O, Le Monnier A (2016) Optimization of the β-LACTA test for the detection of extended-spectrum-β-lactamase-producing bacteria directly in urine samples. Infect Dis 48(9):695–698Google Scholar
  13. 13.
    van den Bijllaardt W, Buiting AG, Mouton JW, Muller AE (2017) Shortening the incubation time for antimicrobial susceptibility testing by disk diffusion for Enterobacteriaceae: how short can it be and are the results accurate? Int J Antimicrob AgentsGoogle Scholar
  14. 14.
    Fröding I, Vondracek M, Giske CG (2016) Rapid EUCAST disc diffusion testing of MDR Escherichia coli and Klebsiella pneumoniae : inhibition zones for extended-spectrum cephalosporins can be reliably read after 6 h of incubation. J Antimicrob Chemother:dkw515Google Scholar
  15. 15.
    Le Page S, Dubourg G, Rolain J-M (2016) Evaluation of the Scan ® 1200 as a rapid tool for reading antibiotic susceptibility testing by the disc diffusion technique. J Antimicrob Chemother 71(12):3424–3431Google Scholar
  16. 16.
    Hombach M, Jetter M, Blöchliger N, Kolesnik-Goldmann N, Böttger EC (2017) Fully automated disc diffusion for rapid antibiotic susceptibility test results: a proof-of-principle study. J Antimicrob Chemother 72(6):1659–1668Google Scholar
  17. 17.
    Hombach M, Jetter M, Keller PM, Blöchliger N, Kolesnik-Goldmann N, Böttger EC (2017) Rapid detection of ESBL, carbapenemases, MRSA and other important resistance phenotypes within 6–8 h by automated disc diffusion antibiotic susceptibility testing. J Antimicrob Chemother 72(11):3063–3069Google Scholar
  18. 18.
    Wootton M (2013) BSAC methods for antimicrobial susceptibility test. http://bsac.org.uk/wp-content/uploads/2012/02/Version-12-Apr-2013_final.pdf. Accessed 10 29 2018
  19. 19.
    Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 49(11):1749–1755Google Scholar
  20. 20.
    Jorgensen JH (1993) Selection criteria for an antimicrobial susceptibility testing system. J Clin Microbiol 31(11):2841Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Claire Périllaud-Dubois
    • 1
  • Benoît Pilmis
    • 2
  • Julien Diep
    • 2
  • Gauthier Péan de Ponfilly
    • 1
  • Simon Perreau
    • 1
  • Louise Ruffier d’Epenoux
    • 1
  • Assaf Mizrahi
    • 1
  • Carine Couzigou
    • 2
    • 3
  • Barbara Vidal
    • 2
    • 3
  • Alban Le Monnier
    • 1
  • Jean-Claude Nguyen Van
    • 1
    Email author
  1. 1.Laboratoire de Microbiologie CliniqueGroupe Hospitalier Paris Saint-JosephParisFrance
  2. 2.Unité Mobile de Microbiologie CliniqueGroupe Hospitalier Paris Saint-JosephParisFrance
  3. 3.Equipe opérationnel d’hygièneGroupe Hospitalier Paris Saint-JosephParisFrance

Personalised recommendations