Implications of stx loss for clinical diagnostics of Shiga toxin-producing Escherichia coli

  • Thulasika Senthakumaran
  • Lin Torstensen Brandal
  • Bjørn-Arne Lindstedt
  • Silje Bakken Jørgensen
  • Colin Charnock
  • Hege Smith TunsjøEmail author
Original Article


The dynamics related to the loss of stx genes from Shiga toxin-producing Escherichia coli remain unclear. Current diagnostic procedures have shortcomings in the detection and identification of STEC. This is partly owing to the fact that stx genes may be lost during an infection or in the laboratory. The aim of the present study was to provide new insight into in vivo and in vitro stx loss in order to improve diagnostic procedures. Results from the study support the theory that loss of stx is a strain-related phenomenon and not induced by patient factors. It was observed that one strain could lose stx both in vivo and in vitro. Whole genome comparison of stx-positive and stx-negative isolates from the same patient revealed that different genomic rearrangements, such as complete or partial loss of the parent prophage, may be factors in the loss of stx. Of diagnostic interest, it was shown that patients can be co-infected with different E. coli pathotypes. Therefore, identification of eae-positive, but stx-negative isolates should not be interpreted as “Shiga toxin-lost” E. coli without further testing. Growth and recovery of STEC were supported by different selective agar media for different strains, arguing for inclusion of several media in STEC diagnostics.


STEC diagnostics stx-loss EHEC diagnostics Phage excision Selective culture media 



We thank colleagues at the Department of Microbiology and Infection Control at Ahus for laboratory assistance. Parts of the contents have been presented in a report to the National Institute of Public Health. The sequencing service was provided by the Norwegian Sequencing Centre (, a national technology platform hosted by the University of Oslo and supported by the “Functional Genomics” and “Infrastructure” programs of the Research Council of Norway and the Southeastern Regional Health Authorities.


This study received funding from Akershus University Hospital, National Institute of Public Health and Oslo Metropolitan University.

Compliance with ethical standards

The study was approved by the Data protection manager at Ahus (Project number12-042) and by the Regional Committees for Medical and Health Research Ethics (REK), South East, Norway (Project number 2012-102).

Informed consent was obtained from all participants.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Tarr PI, Gordon CA, Chandler WL (2005) Shiga-toxin-producing Escherichia coli and haemolytic uremic syndrome. Lancet 365:1073–1086PubMedGoogle Scholar
  2. 2.
    Bai X, Fu S, Zhang J, Fan R, Xu Y, Sun H, He X, Xu J, Xiong Y (2018) Identification and pathogenomic analysis of an Escherichia coli strain producing a novel Shiga toxin 2 subtype. Sci Rep 8:6756. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Naseer U, Løbersli I, Hindrum M, Bruvik T, Brandal LT (2017) Virulence factors of Shiga toxin-producing Escherichia coli and the risk of developing haemolytic uremic syndrome in Norway, 1992-2013. Eur J Clin Microbiol Infect Dis 36:1613–1620CrossRefGoogle Scholar
  4. 4.
    Fasel D, Mellmann A, Cernela N, Hächler H, Fruth A, Khanna N, Egli A, Beckmann C, Hirsch HH, Goldenberger D, Stephan R (2014) Hemolytic uremic syndrome in a 65-year-old male linked to a very unusual type of stx 2e - and eae-harboring O51:H49 Shiga toxin-producing Escherichia coli. JCM 52(4):1301–1303CrossRefGoogle Scholar
  5. 5.
    Saupe A, Edel B, Pfister W, Löffler B, Ehricht R, Rödel J (2017). Acute diarrhea due to a Shiga toxin 2e-producing Escherichia coli O8:H19. JMM Case Rep 4. doi:
  6. 6.
    Herold S, Karch H, Schmidt H (2004) Shiga toxin-encoding bacteriophages — genomes in motion. Int J Med Microbiol 294:115–121CrossRefGoogle Scholar
  7. 7.
    de Sablet T, Bertin Y, Vareille M, Girardeau JP, Garrivier A, Gobert AP, Martin C (2008) Differential expression of stx2 variants in Shiga toxin-producing Escherichia coli belonging to seropathotypes a and C. Microbiology 154(Pt 1):176–186CrossRefGoogle Scholar
  8. 8.
    Waldor MK, Friedman DI (2005) Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol 8(4):459–465CrossRefGoogle Scholar
  9. 9.
    Bielaszewska M, Prager R, Köck R, Mellmann A, Zhang W, Tschäpe H, Tarr PI, Karch H (2007) Shiga toxin gene loss and transfer in vitro and in vivo during enterohemorrhagic Escherichia coli O26 infection in humans. Appl Environ Microbiol 73(10):3144–3150CrossRefGoogle Scholar
  10. 10.
    Bielaszewska M, Köck R, Friedrich AW, von Eiff C, Zimmerhackl LB, Karch H, Mellmann A (2007) Shiga toxin-mediated hemolytic uremic syndrome: time to change the diagnostic paradigm? PLoS One 2(10):e1024CrossRefGoogle Scholar
  11. 11.
    Mellmann A, Lu S, Karch H, Xu JG, Harmsen D, Schmidt MA, Bielaszewska M (2008) Recycling of Shiga toxin 2 genes in sorbitol-fermenting enterohemorrhagic Escherichia coli O157:NM. Appl Environ Microbiol 74(1):67–72CrossRefGoogle Scholar
  12. 12.
    Karch H, Meyer T, Rüssmann J (1992) Frequent loss of Shiga-like toxin genes in clinical isolates of Escherichia coli upon subcultivation. Infect Immun 60:3464–3467PubMedPubMedCentralGoogle Scholar
  13. 13.
    Tunsjø HS, Kvissel AK, Follin-Arbelet B, Brotnov B-M, Ranheim TE, Leegaard TM (2015) Suitability of stx-PCR directly from fecal samples in clinical diagnostics of STEC. APMIS 123(10):872–878CrossRefGoogle Scholar
  14. 14.
    Scheutz F, Teel LD, Beutin L, Piérard D, Buvens G, Karch H, Mellan A, Caprioli A, Tozzoli R, Morabito S et al (2012) Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. JCM 50(9):2951–2963CrossRefGoogle Scholar
  15. 15.
    Nielsen EM, Andersen MT (2003) Detection and characterization of verocytotoxin-producing Escherichia coli by automated 50 nuclease PCR assay. J Clin Microbiol 41:2884–2893CrossRefGoogle Scholar
  16. 16.
    Lin A, Sutton O, Lau HK, Wong E, Hartman G, Lauzon CR (2011) O-serogroup specific real-time PCR assays for the detection and identification of nine clinically relevant non O-157 STECs. Food Microbiol 28:478–483CrossRefGoogle Scholar
  17. 17.
    Guy RA, Tremblay D, Beausoleil L, Harel J, Champagne MJ (2014) Quantification of E. coli O157 and STEC in feces of farm animals using direct multiplex real time PCR (qPCR) and a modified most probable number assay comprised of immunomagnetic bead separation and qPCR detection. J Microbiol Methods 99:44–53CrossRefGoogle Scholar
  18. 18.
    Beutin L, Delannoy S, Fach P (2015) Sequence variations in the flagellar antigen genes fliCH25 and fliCH28 of Escherichia coli and their use in identification and characterization of Enterohemorrhagic E. coli (EHEC) O145:H25 and O145:H28. PLoS One 10(5):e0126749CrossRefGoogle Scholar
  19. 19.
    Hyma KE, Lacher DW, Nelson AM, Bumbaugh AC, Janda JM, Strockbine NA, Young VB, Whittam TS (2005) (2005). Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J Bacteriol 187(2):619–628CrossRefGoogle Scholar
  20. 20.
    Larsen MV, Cosentino S, Lukjancenko O, Saputra D, Rasmussen S, Hasman H, Sicheritz-Pontén T, Aarestrup FM, Ussery DW, Lund O (2014) Benchmarking of methods for genomic taxonomy. J Clin Microbiol 52(5):1529–1539CrossRefGoogle Scholar
  21. 21.
    Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O (2013) PathogenFinder – distinguishing friend from foe using bacterial whole genome sequencing data. PlosOne 8(10):e77302CrossRefGoogle Scholar
  22. 22.
    Joensen KGAM, Tetzschner A, Iguchi FM, Aarestrup M, Scheutz F (2015) Rapid and easy in silico serotyping of Escherichia coli using whole genome sequencing (WGS) data. J Clin Microbiol 53(8):2410–2426CrossRefGoogle Scholar
  23. 23.
    Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup M, Lund O (2012) Multilocus sequence typing of Total genome sequenced bacteria. J Clin Micobiol 50(4):1355–1361CrossRefGoogle Scholar
  24. 24.
    Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, Aarestrup FM, Hasman H (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58(7):3895–3903CrossRefGoogle Scholar
  25. 25.
    Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52(5):1501–1510CrossRefGoogle Scholar
  26. 26.
    Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403CrossRefGoogle Scholar
  27. 27.
    Brandal LT, Tunsjø HS, Ranheim TE, Løbersli I, Lange H, Wester AL (2015) Shiga toxin 2a in Escherichia albertii. JCM 53(4):1454–1455CrossRefGoogle Scholar
  28. 28.
    Joris M-A, Verstraete K, De Reu K, De Zutter L (2011) Loss of vtx genes after the first subcultivation step of Verocytotoxigenic Escherichia coli O157 and non-O157 during isolation from naturally contaminated fecal samples. Toxins (Basel) 3(6):672–677CrossRefGoogle Scholar
  29. 29.
    Matussek A, Jernberg C, Einemo I-M, Monecke S, Ehricht R, Engelmann I, Löfgren S, Mernelius S (2017) Genetic make-up of Shiga toxin-producing Escherichia coli in relation to clinical symptoms and duration of shedding: a microarray analysis of isolates from Swedish children. Eur J Clin Microbiol Infect Dis 36:1433–1441CrossRefGoogle Scholar
  30. 30.
    Shaikh N, Tarr PI (2003) Escherichia coli O157:H7 Shiga toxin-encoding bacteriophages: integrations, excisions, truncations, and evolution-ary implications. J Bacteriol 185:3596–3605CrossRefGoogle Scholar
  31. 31.
  32. 32.
    Hirvonen JJ, Siitonen A, Kaukoranta SS (2012) Usability and performance of CHROMagar STEC medium in detection of Shiga toxin-producing Escherichia coli strains. J Clin Microbiol 50(11):3586–3590CrossRefGoogle Scholar
  33. 33.
    Gill A, Huszczynski G, Gauthier M, Blais B (2014) Evaluation of eight agar media for the isolation of Shiga toxin-producing Escherichia coli. J Microbiol Methods 96:6–11CrossRefGoogle Scholar
  34. 34.
    Gouali M, Ruckly C, Carle I, Lejay-Collin M, Weill F-X (2013) Evaluation of CHROMagar STEC and STEC O104 chromogenic agar Media for Detection of Shiga toxin-producing Escherichia coli in stool specimens. J Clin Microbiol 51(3):894–900CrossRefGoogle Scholar
  35. 35.
    Martinez-Castillo A, Quirós P, Navarro F, Miró E, Muniesa M (2013) Shiga toxin 2-encoding bacteriophages in human fecal samples from healthy individuals. Appl Environ Microbiol 79:4862–4868CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Thulasika Senthakumaran
    • 1
    • 2
  • Lin Torstensen Brandal
    • 3
  • Bjørn-Arne Lindstedt
    • 4
  • Silje Bakken Jørgensen
    • 5
  • Colin Charnock
    • 2
  • Hege Smith Tunsjø
    • 2
    • 5
    Email author return OK on get
  1. 1.Department of Multidisciplinary Laboratory Science and Medical Biochemistry, Genetic UnitAkershus University HospitalLørenskogNorway
  2. 2.Department of Life Sciences and HealthOslo Metropolitan UniversityOsloNorway
  3. 3.Department of Zoonotic, Food- and Waterborne InfectionsNorwegian Institute of Public HealthOsloNorway
  4. 4.Department of Chemistry, Biotechnology and Food SciencesNorwegian University of Life SciencesÅsNorway
  5. 5.Department of Microbiology and Infection controlAkershus University HospitalLørenskogNorway

Personalised recommendations