Roles of intestinal microbiota in response to cancer immunotherapy

  • Jing Cong
  • Xiaochun ZhangEmail author


Cancer immunotherapy has been significantly effective on multiple cancers; however, there are still a distinct number of non-responding patients and various immune-related adverse events in responding patients. It is known that heterogeneity of intestinal microbiota may lead to different outcomes of therapy. Previous studies have reported that intestinal microbiota is probably attributed to influence the efficacy of cancer immunotherapy. Some intestinal bacteria could synergize with immune checkpoint blockade agents and optimize the immune response against multiple cancers. Therefore, understanding the roles of intestinal microbiota could help to improve the clinical efficacy of cancer immunotherapy. In this review, we first introduced the close relationships between intestinal microbiota and intestinal immune system. Then, we described the emerging evidences that intestinal microbiota responses to cancer immunotherapy. Finally, we briefly reviewed the technical development on intestinal microbiota research.


Intestinal microbiota Intestinal immune system Cancer immunotherapy Adverse side Research technology 



Antimicrobial peptides


Chimeric antigen receptor


Cytotoxic T lymphocyte-associated antigen-4


Dendritic cells


Immune checkpoint inhibitors


Lamina propria


Monoclonal antibodies


Nod-like receptors


Pattern recognition receptors


Programmed cell death 1


Programmed cell death ligand 1


Regenerating islet-derived protein 3γ


Regenerating islet-derived protein 3β


Short-chain fatty acids


Toll-like receptors


T regulatory cells


Tumor growth factor-β



The assistance of the staff is gratefully appreciated.


This study was supported by the funding from Project funded by China Postdoctoral Science Foundation (2016M602094), Qingdao Application Research Project (2016047), and Qingdao People’s Livelihood Science and Technology Program (16-6-2-3-nsh).

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.


  1. 1.
    Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269CrossRefGoogle Scholar
  2. 2.
    Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(17):123–135CrossRefGoogle Scholar
  3. 3.
    Shalapour S, Lin XJ, Bastian IN, Brain J, Burt AD, Aksenov AA, Vrbanac AF, Li W, Perkins A, Matsutani T (2017) Erratum: inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 551(7680):340–345CrossRefGoogle Scholar
  4. 4.
    Ribas A, Kefford R, Marshall MA, Punt CJ, Haanen JB, Marmol M, Garbe C, Gogas H, Schachter J, Linette G (2013) Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol 31(5):616–622CrossRefGoogle Scholar
  5. 5.
    Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, Aj VDE, Krainer M, Houede N, Santos R, Mahammedi H (2014) Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 15(10):700–712CrossRefGoogle Scholar
  6. 6.
    Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, Sebastian M, Neal J, Lu H, Cuillerot JM (2012) Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol 30(17):2046–2054CrossRefGoogle Scholar
  7. 7.
    Aglietta M, Barone C, Sawyer MB, Moore MJ, Jr MW, Bagalà C, Colombi F, Cagnazzo C, Gioeni L, Wang E (2014) A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann Oncol 25(9):1750CrossRefGoogle Scholar
  8. 8.
    Hodi FS, O’Day SJ, Mcdermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC (2016) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723CrossRefGoogle Scholar
  9. 9.
    Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5(4):263–274CrossRefGoogle Scholar
  10. 10.
    Larkin J, Chiarionsileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P (2015) Combined nivolumab and ipilimumab or monotherapy in previously untreated melanoma. N Engl J Med 373(1):23CrossRefGoogle Scholar
  11. 11.
    Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, Mcneil C, Lotem M (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532CrossRefGoogle Scholar
  12. 12.
    Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33(17):1974–1982CrossRefGoogle Scholar
  13. 13.
    Weber JS, Kähler KC, Hauschild A (2012) Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 30(21):2691–2697CrossRefGoogle Scholar
  14. 14.
    Peled JU, Devlin SM, Staffas A, Lumish M, Khanin R, Littmann ER, Ling L, Kosuri S, Maloy M, Slingerland JB (2017) Intestinal microbiota and relapse after hematopoietic-cell transplantation. J Clin Oncol 35(15):JCO2016703348CrossRefGoogle Scholar
  15. 15.
    Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342(6161):967–970CrossRefGoogle Scholar
  16. 16.
    Sivan A, Corrales L, Hubert N, Williams JB, Aquinomichaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350(6264):1084–1089CrossRefGoogle Scholar
  17. 17.
    Brestoff JR, Artis D (2013) Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14(7):676CrossRefGoogle Scholar
  18. 18.
    Randall TD, Mebius RE (2014) The development and function of mucosal lymphoid tissues: a balancing act with micro-organisms. Mucosal Immunol 7(3):455CrossRefGoogle Scholar
  19. 19.
    Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP, Belkaid Y, Merad M (2014) Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343(6178):1249288CrossRefGoogle Scholar
  20. 20.
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267CrossRefGoogle Scholar
  21. 21.
    Goto Y, Ivanov II (2013) Intestinal epithelial cells as mediators of the commensal–host immune crosstalk. Immunol Cell Biol 91(3):204–214CrossRefGoogle Scholar
  22. 22.
    Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10(11):735CrossRefGoogle Scholar
  23. 23.
    Lavelle EC, Murphy C, O’Neill LAJ, Creagh EM (2009) The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol 3(1):17CrossRefGoogle Scholar
  24. 24.
    Cani PD, Everard A, Duparc T (2013) Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol 13(6):935–940CrossRefGoogle Scholar
  25. 25.
    Kamada N, Seo SU, Chen GY, Núñez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13(5):321–335CrossRefGoogle Scholar
  26. 26.
    Round JL, Mazmanian SK (2009) The gut microbiome shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323CrossRefGoogle Scholar
  27. 27.
    Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489(7415):231–241CrossRefGoogle Scholar
  28. 28.
    Masahata K, Umemoto E, Kayama H, Kotani M, Nakamura S, Kurakawa T, Kikuta J, Gotoh K, Motooka D, Sato S (2014) Generation of colonic IgA-secreting cells in the caecal patch. Nat Commun 5(4):3704CrossRefGoogle Scholar
  29. 29.
    Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500(7461):232CrossRefGoogle Scholar
  30. 30.
    Cording S, Fleissner D, Heimesaat MM, Bereswill S, Loddenkemper C, Uematsu S, Akira S, Hamann A, Huehn J (2013) Commensal microbiota drive proliferation of conventional and Foxp3(+) regulatory CD4(+) T cells in mesenteric lymph nodes and Peyer’s patches. Eur J Microbiol Immunol 3(1):1CrossRefGoogle Scholar
  31. 31.
    Obata Y, Furusawa Y, Endo TA, Sharif J, Takahashi D, Atarashi K, Nakayama M, Onawa S, Fujimura Y, Takahashi M (2014) The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells. Nat Immunol 15(6):571CrossRefGoogle Scholar
  32. 32.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohloolyy M, Glickman JN, Garrett WS (2013) The microbial metabolites, short chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573CrossRefGoogle Scholar
  33. 33.
    Uetake C, Takahashi D, Topping DL, Miyauchi E, Nakato G, Koseki H, Ohno H, Clarke JM, Kikuchi J, Kato K (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446CrossRefGoogle Scholar
  34. 34.
    Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079CrossRefGoogle Scholar
  35. 35.
    Chaput N, Lepage P, Coutzac C, Soularue E, Le RK, Monot C, Boselli L, Routier E, Cassard L, Collins M (2017) Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol 28(6):1368CrossRefGoogle Scholar
  36. 36.
    Frankel AE, Coughlin LA, Kim J, Froehlich TW, Yang X, Frenkel EP, Koh AY (2017) Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 19(10):848CrossRefGoogle Scholar
  37. 37.
    Routy B, Le CE, Derosa L, Cpm D, Alou MT, Daillè R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371):91CrossRefGoogle Scholar
  38. 38.
    Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ, Gajewski TF (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359(6371):104CrossRefGoogle Scholar
  39. 39.
    Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359(6371):97CrossRefGoogle Scholar
  40. 40.
    Pardoll D (2015) Cancer and the immune system: basic concepts and targets for intervention. Semin Oncol 42(4):523–538CrossRefGoogle Scholar
  41. 41.
    Beck KE, Blansfield JA, Tran KQ, Feldman AL, Hughes MS, Royal RE, Kammula US, Topalian SL, Sherry RM, Kleiner D (2006) Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol 24(15):2283–2289CrossRefGoogle Scholar
  42. 42.
    Mao K, Baptista AP, Tamoutounour S, Zhuang L, Bouladoux N, Martins AJ, Huang Y, Gerner MY, Belkaid Y, Germain RN (2018) Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature 554 (7691)CrossRefGoogle Scholar
  43. 43.
    Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, No D, Gobourne A, Littmann E, Huttenhower C (2016) Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun 7:10391CrossRefGoogle Scholar
  44. 44.
    Lucke K, Miehlke S, Jacobs E, Schuppler M (2006) Prevalence of Bacteroides and Prevotella spp. in ulcerative colitis. J Med Microbiol 55(5):617–624CrossRefGoogle Scholar
  45. 45.
    Nguyen TLA, Vieira-Silva S, Liston A, Raes J (2015) How informative is the mouse for human gut microbiota research? Dis Model Mech 8(1):1–16CrossRefGoogle Scholar
  46. 46.
    Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102(31):11070–11075CrossRefGoogle Scholar
  47. 47.
    Graf D, Cagno RD, Fåk F, Flint HJ, Nyman M, Saarela M, Watzl B (2015) Contribution of diet to the composition of the human gut microbiota. Biochem J 26(1):477–480Google Scholar
  48. 48.
    Conlon M, Bird A (2015) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7(1):17–44CrossRefGoogle Scholar
  49. 49.
    Lamendella R, Verberkmoes N, Jansson JK (2012) ‘Omics’ of the mammalian gut – new insights into function. Curr Opin Biotechnol 23(3):491–500CrossRefGoogle Scholar
  50. 50.
    Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M, Zheng Z, Järnerot G, Tysk C, Jansson JK, Engstrand L (2011) A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139(6):1844–1854.e1CrossRefGoogle Scholar
  51. 51.
    Zoetendal EG, Raes J, Bogert BVD, Arumugam M, Booijink CC, Troost FJ, Bork P, Wels M, Vos WMD, Kleerebezem M (2012) The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 6(7):1415–1426CrossRefGoogle Scholar
  52. 52.
    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical OncologyThe Affiliated Hospital of Qingdao University, Qingdao UniversityQingdaoChina
  2. 2.Cancer InstituteQingdaoChina

Personalised recommendations