Advertisement

Molecular epidemiology of virulence and antimicrobial resistance determinants in Klebsiella pneumoniae from hospitalised patients in Kilimanjaro, Tanzania

  • Tolbert SondaEmail author
  • Happiness Kumburu
  • Marco van Zwetselaar
  • Michael Alifrangis
  • Blandina T. Mmbaga
  • Ole Lund
  • Gibson S. Kibiki
  • Frank M. Aarestrup
Original Article

Abstract

This study aimed to use whole-genome sequencing to determine virulence and antimicrobial resistance genes in K. pneumoniae isolated from patients in a tertiary care hospital in Kilimanjaro. K. pneumoniae isolates from patients attending Kilimanjaro Christian Medical Centre between August 2013 and August 2015 were fully genome-sequenced and analysed locally. Sequence analysis was done for identification of virulence and AMR genes. Plasmid and multi-locus sequence typing and capsular or capsular (K) typing were performed and phylogeny was done to ascertain K. pneumoniae relatedness. Stata 13 (College Station, TX, 77845, USA) was used to determine Cohen’s kappa coefficient of agreement between the phenotypically tested and sequence-predicted resistance. A total of 16 (47.1%) sequence types (STs) and 10 (29.4%) K types were identified in 30 (88.2%) and 17 (50.0%) of all analysed isolates, respectively. K. pneumoniae ST17 were 6 (17.6%). The commonest determinants were blaCTX-M-15 in 16 (47.1%) isolates, blaSHV in 30 (88.2%), blaOXA-1 in 8 (23.5%) and blaTEM-1 in 18 (52.9%) isolates. Resistance genes for aminoglycosides were detected in 21 (61.8%) isolates, fluoroquinolones in 13 (38.2%) and quinolones 34 (100%). Ceftazidime and ceftriaxone showed the strongest agreement between phenotype- and sequence-based resistance results: 93.8%, kappa = 0.87 and p = 0.0002. Yersiniabactin determinant was detected in 12 (35.3%) of K. pneumoniae. The proportion of AMR and virulence determinants detected in K. pneumoniae is alarming. WGS-based diagnostic approach has showed promising potentials in clinical microbiology, hospital outbreak source tracing virulence and AMR detection at KCMC.

Keywords

K. pneumoniae Whole-genome sequencing Virulence Antimicrobial resistance Tanzania 

Notes

Acknowledgements

We thank the management of Kilimanjaro Christian Medical Centre and all patients who consented to participate in this study.

Authors’ contributions

TS conceived the initial idea; FA, OL, MA, BTM and GK refined the idea. TS and HK performed the laboratory analyses. TS and MZ analysed the data and prepared the manuscript draft. TS, HK, MZ, FA, OL, MA, BTM and GK read, revised and approved the final manuscript.

Funding

This study was supported by DANIDA through Danida Fellowship Centre award number DFC no. 12-007DTU.

Compliance with ethical standards

Ethical approval and participant’s consent

This study was granted ethical approval by the KCMUCo Research Ethics Committee and the National Institute for Medical Research with approval numbers 893 and NIMR/HQ/R.8a/Vol.IX/2080, respectively. A written informed consent was obtained from each participant or from parents or guardians of children before enrolment into the study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no conflicts of interest.

Availability of Data and Materials

Genome assemblies have been submitted to the European Nucleotide Archive with project accession number PRJEB26616. Other data are available on request to the authors.

Supplementary material

10096_2018_3324_MOESM1_ESM.xls (35 kb)
ESM 1 (XLS 35 kb)

References

  1. 1.
    Christopher A, Mshana SE, Kidenya BR, Hokororo A, Morona D (2013) Bacteremia and resistant gram-negative pathogens among under-fives in Tanzania. Ital J Pediatr 39:1–8CrossRefGoogle Scholar
  2. 2.
    Onken A, Said AK, Jørstad M, Jenum PA, Blomberg B (2015) Prevalence and antimicrobial resistance of microbes causing bloodstream infections in unguja, Zanzibar. PLoS One 10:e0145632.  https://doi.org/10.1371/journal.pone.0145632 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pourakbari B, Sadr A, Ashtiani MTH, Mamishi S, Dehghani M, Mahmoudi S et al (2012) Five-year evaluation of the antimicrobial susceptibility patterns of bacteria causing bloodstream infections in Iran. J Infect Dev Ctries 6:120–125PubMedGoogle Scholar
  4. 4.
    Mpogoro FJ, Mshana SE, Mirambo MM, Kidenya BR, Gumodoka B, Imirzalioglu C (2014) Incidence and predictors of surgical site infections following caesarean sections at Bugando medical Centre, Mwanza, Tanzania. Antimicrob Resist Infect Control 3:25.  https://doi.org/10.1186/2047-2994-3-25 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sonda T, Kumburu H, van Zwetselaar M, Alifrangis M, Lund O, Kibiki G et al (2016) Meta-analysis of proportion estimates of Extended-Spectrum-Beta-Lactamase-producing Enterobacteriaceae in East Africa hospitals. Antimicrob Resist Infect Control 5:1–9.  https://doi.org/10.1186/s13756-016-0117-4 CrossRefGoogle Scholar
  6. 6.
    Mshana SE, Hain T, Domann E, Lyamuya EF, Chakraborty T, Imirzalioglu C (2013) Predominance of Klebsiella pneumoniae ST14 carrying CTX-M-15 causing neonatal sepsis in Tanzania. BMC Infect Dis 13:466.  https://doi.org/10.1186/1471-2334-13-466 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Souli M, Galani I, Antoniadou A, Papadomichelakis E, Poulakou G, Panagea T et al (2010) An outbreak of infection due to β-lactamase Klebsiella pneumoniae Carbapenemase 2–Producing K. Pneumoniae in a Greek University hospital: molecular characterization, epidemiology, and outcomes. Clin Infect Dis 50:364–373.  https://doi.org/10.1086/649865 CrossRefPubMedGoogle Scholar
  8. 8.
    Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M et al (2013) Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13:785–796.  https://doi.org/10.1016/S1473-3099(13)70190-7 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ahmed M, Moremi N, Mirambo MM, Hokororo A, Mushi MF, Seni J et al (2015) Multi-resistant gram negative enteric bacteria causing urinary tract infection among malnourished underfives admitted at a tertiary hospital, northwestern, Tanzania. Ital J Pediatr 41:44.  https://doi.org/10.1186/s13052-015-0151-5 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bachman MA, Oyler JE, Burns SH, Caza M, Lépine F, Dozois CM et al (2011) Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infect Immun 79:3309–3316.  https://doi.org/10.1128/IAI.05114-11 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lu M-C, Chen Y-T, Chiang M-K, Wang Y-C, Hsiao P-Y, Huang Y-J et al (2017) Colibactin contributes to the hypervirulence of pks+ K1 CC23 Klebsiella pneumoniae in Mouse Meningitis Infections. Front Cell Infect Microbiol 7:103.  https://doi.org/10.3389/fcimb.2017.00103 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Russo TA, Olson R, MacDonald U, Beanan J, Davidson BA (2015) Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect Immun 83:3325–3333.  https://doi.org/10.1128/IAI.00430-15 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pomakova DK, Hsiao CB, Beanan JM, Olson R, MacDonald U, Keynan Y et al (2012) Clinical and phenotypic differences between classic and hypervirulent Klebsiella pneumonia: An emerging and under-recognized pathogenic variant. Eur J Clin Microbiol Infect Dis 31:981–989.  https://doi.org/10.1007/s10096-011-1396-6 CrossRefPubMedGoogle Scholar
  14. 14.
    Shon AS, Bajwa RPS, Russo TA (2013) Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: A new and dangerous breed. Virulence 4:107–118.  https://doi.org/10.4161/viru.22718 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Turton JF, Englender H, Gabriel SN, Turton SE, Kaufmann ME, Pitt TL (2007) Genetically similar isolates of Klebsiella pneumoniae serotype K1 causing liver abscesses in three continents. J Med Microbiol 56:593–597.  https://doi.org/10.1099/jmm.0.46964-0 CrossRefPubMedGoogle Scholar
  16. 16.
    Melzer M, Petersen I (2007) Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. J Infect 55:254–259.  https://doi.org/10.1016/j.jinf.2007.04.007 CrossRefPubMedGoogle Scholar
  17. 17.
    Price DB, Honeybourne D, Little P, Mayon-White RT, Read RC, Thomas M et al (2004) Community-acquired pneumonia mortality: a potential link to antibiotic prescribing trends in general practice. Respir Med 98:17–24.  https://doi.org/10.1016/j.rmed.2003.08.011 CrossRefPubMedGoogle Scholar
  18. 18.
    Blomberg B, Manji KP, Urassa WK, Tamim BS, Mwakagile DSM, Jureen R et al (2007) Antimicrobial resistance predicts death in Tanzanian children with bloodstream infections : a prospective cohort study. BMC Infect Dis 7:1–14.  https://doi.org/10.1186/1471-2334-7-43 CrossRefGoogle Scholar
  19. 19.
    Marra AR, Pereira CAP, Castelo A, Do Carmo Filho JR, Cal RGR, Sader HS et al (2006) Health and economic outcomes of the detection of Klebsiella pneumoniae-produced extended-spectrum β-lactamase (ESBL) in a hospital with high prevalence of this infection. Int J Infect Dis 10:56–60.  https://doi.org/10.1016/j.ijid.2005.04.002 CrossRefPubMedGoogle Scholar
  20. 20.
    Hu B, Ye H, Xu Y, Ni Y, Hu Y, Yu Y et al (2010) Clinical and economic outcomes associated with community-acquired intra-abdominal infections caused by extended spectrum beta-lactamase (ESBL) producing bacteria in China. Curr Med Res Opin 26:1443–1449.  https://doi.org/10.1185/03007991003769068 CrossRefPubMedGoogle Scholar
  21. 21.
    Esteve-Palau E, Solande G, Sánchez F, Sorlí L, Montero M, Güerri R et al (2015) Clinical and economic impact of urinary tract infections caused by ESBL-producing Escherichia coli requiring hospitalization: a matched cohort study. J Infect 71:667–674.  https://doi.org/10.1016/j.jinf.2015.08.012 CrossRefPubMedGoogle Scholar
  22. 22.
    Pitout JDD, Nordmann P, Poirel L (2015) Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 59:5873–5884.  https://doi.org/10.1128/AAC.01019-15 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yeo JM (2016) Antimicrobial stewardship: improving antibiotic prescribing practice in a respiratory ward. BMJ Qual Improv Rep 5:u206491.w3570.  https://doi.org/10.1136/bmjquality.u206491.w3570 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bantar C, Sartori B, Vesco E, Heft C, Saúl M, Salamone F et al (2003) A hospitalwide intervention program to optimize the quality of antibiotic use: impact on prescribing practice, antibiotic consumption, cost savings, and bacterial resistance. Clin Infect Dis 37:180–186.  https://doi.org/10.1086/375818 CrossRefPubMedGoogle Scholar
  25. 25.
    Hardy-Holbrook R, Aristidi S, Chandnani V, Dewindt D, Dinh K (2013) Antibiotic resistance and prescribing in Australia: current attitudes and practice of GPs. Healthc Infect 18:147–151.  https://doi.org/10.1071/HI13019 CrossRefGoogle Scholar
  26. 26.
    Gwimile JJ, Shekalaghe SA, Kapanda GN, Kisanga ER (2012) Antibiotic prescribing practice in management of cough and/or diarrhoea in Moshi municipality, Northern Tanzania: cross-sectional descriptive study. Pan Afr Med J 12:103PubMedPubMedCentralGoogle Scholar
  27. 27.
    Thriemer K, Katuala Y, Batoko B, Alworonga J-P, Devlieger H, Van Geet C et al (2013) Antibiotic prescribing in DR Congo: a knowledge, attitude and practice survey among medical doctors and students. PLoS One 8:e55495.  https://doi.org/10.1371/journal.pone.0055495 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ah YM, Kim AJ, Lee JY (2014) Colistin resistance in Klebsiella pneumoniae. Int J Antimicrob Agents 44:8–15.  https://doi.org/10.1016/j.ijantimicag.2014.02.016 CrossRefPubMedGoogle Scholar
  29. 29.
    van den Boogaard J, Semvua HH, Boeree MJ, Aarnoutse RE, Kibiki GS (2009) Sale of fluoroquinolones in northern Tanzania: a potential threat for fluoroquinolone use in tuberculosis treatment. J Antimicrob Chemother 65:145–147.  https://doi.org/10.1093/jac/dkp413 CrossRefGoogle Scholar
  30. 30.
    Sonda T, Kumburu H, van Zwetselaar M, Ahrenfeldt J, Alifrangis M, Lund O et al (2016) Benchtop whole-genome sequencing for identification of nosocomial outbreaks in Tanzania. Infect Control Hosp Epidemiol 37:622–623.  https://doi.org/10.1017/ice.2016.28 CrossRefPubMedGoogle Scholar
  31. 31.
    van Zwetselaar M, Nyombi B, Sonda T, Kumburu H, Chamba N, Dekker MCJ et al (2018) Aeromonas caviae mimicking Vibrio cholerae infectious enteropathy in a cholera-endemic region with possible public health consequences: two case reports. J Med Case Rep 12:71.  https://doi.org/10.1186/s13256-018-1603-5 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kumburu HH, Sonda T, Mmbaga BT, Alifrangis M, Lund O, Kibiki G et al (2017) Patterns of infections, aetiological agents and antimicrobial resistance at a tertiary care hospital in northern Tanzania. Tropical Med Int Health 22:454–464.  https://doi.org/10.1111/tmi.12836 CrossRefGoogle Scholar
  33. 33.
    Illumina®. Nextera® XT library prep reference guide [Internet]. Document #15031942 v01 2016;1–28. doi: http://support.illumina.com/downloads/nextera_xt_sample_preparation_guide_15031942.html
  34. 34.
    Andrews S, FastQC A (2018) Quality control tool for high throughput sequence dataGoogle Scholar
  35. 35.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477.  https://doi.org/10.1089/cmb.2012.0021 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075.  https://doi.org/10.1093/bioinformatics/btt086 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O et al (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644.  https://doi.org/10.1093/jac/dks261 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL et al (2012) Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50:1355–1361.  https://doi.org/10.1128/JCM.06094-11 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Carattoli A, Zankari E, Garciá-Fernández A, Larsen MV, Lund O, Villa L et al (2014) In silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903.  https://doi.org/10.1128/AAC.02412-14 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM et al (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52:1501–1510.  https://doi.org/10.1128/JCM.03617-13 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O (2014) Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One 9:e104984.  https://doi.org/10.1371/journal.pone.0104984 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Souverein D, Boers SA, Veenendaal D, Euser SM, Kluytmans J, Den Boer JW (2014) Polyclonal spread and outbreaks with ESBL positive gentamicin resistant Klebsiella spp. in the region Kennemerland, the Netherlands. PLoS One 9:e101212.  https://doi.org/10.1371/journal.pone.0101212 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Löhr IH, Hülter N, Bernhoff E, Johnsen PJ, Sundsfjord A, Naseer U (2015) Persistence of a pKPN3-like CTX-M-15-encoding IncFIIK plasmid in a Klebsiella pneumonia ST17 host during two years of intestinal colonization. PLoS One 10:e0116516.  https://doi.org/10.1371/journal.pone.0116516 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhou K, Lokate M, Deurenberg RH, Tepper M, Arends JP, Raangs EGC et al (2016) Use of whole-genome sequencing to trace, control and characterize the regional expansion of extended-spectrum β-lactamase producing ST15 Klebsiella pneumoniae. Sci Rep 6:20840.  https://doi.org/10.1038/srep20840 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Henderson DK, Palmore TN et al (2012) Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 4:148ra116–148ra116.  https://doi.org/10.1126/scitranslmed.3004129 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Becker L, Fuchs S, Pfeifer Y, Semmler T, Eckmanns T, Korr G et al (2018) Whole genome sequence analysis of CTX-M-15 producing klebsiella isolates allowed dissecting a polyclonal outbreak scenario. Front Microbiol 9:322.  https://doi.org/10.3389/fmicb.2018.00322 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Taitt CR, Leski TA, Erwin DP, Odundo EA, Kipkemoi NC, Ndonye JN et al (2017) Antimicrobial resistance of Klebsiella pneumoniae stool isolates circulating in Kenya. PLoS One 12:e0178880.  https://doi.org/10.1371/journal.pone.0178880 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tellevik MG, Blomberg B, Kommedal Ø, Maselle SY, Langeland N, Moyo SJ (2016) High prevalence of faecal carriage of esbl-producing enterobacteriaceae among children in Dar Es Salaam, Tanzania. PLoS ONE 11:e0168024.  https://doi.org/10.1371/journal.pone.0168024 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sonda T, Kumburu H, van Zwetselaar M, Alifrangis M, Mmbaga BT, Aarestrup FM et al (2018) Whole genome sequencing reveals high clonal diversity of Escherichia coli isolated from patients in a tertiary care hospital in Moshi, Tanzania. Antimicrob Resist Infect Control 7:72.  https://doi.org/10.1186/s13756-018-0361-x CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Di Mento G, Cuscino N, Carcione C, Cardinale F, Conaldi PG, Douradinha B (2017) Emergence of a Klebsiella pneumoniae ST392 clone harbouring KPC-3 in an Italian transplantation hospital. J Hosp Infect 98:313–314.  https://doi.org/10.1016/j.jhin.2017.11.019 CrossRefPubMedGoogle Scholar
  51. 51.
    Vubil D, Figueiredo R, Reis T, Canha C, Boaventura L, Da Silva GJ (2017) Outbreak of KPC-3-producing ST15 and ST348 Klebsiella pneumoniae in a Portuguese hospital. Epidemiol Infect 145:595–599.  https://doi.org/10.1017/S0950268816002442 CrossRefPubMedGoogle Scholar
  52. 52.
    Coelho A, González-López JJ, Miró E, Alonso-Tarrés C, Mirelis B, Larrosa MN et al (2010) Characterisation of the CTX-M-15-encoding gene in Klebsiella pneumoniae strains from the Barcelona metropolitan area: plasmid diversity and chromosomal integration. Int J Antimicrob Agents 36:73–78.  https://doi.org/10.1016/j.ijantimicag.2010.03.005 CrossRefPubMedGoogle Scholar
  53. 53.
    Madoshi BP, Kudirkiene E, Mtambo MMA, Muhairwa AP, Lupindu AM, Olsen JE (2016) Characterisation of commensal Escherichia coli isolated from apparently healthy cattle and their attendants in Tanzania. PLoS ONE 11:e0168160.  https://doi.org/10.1371/journal.pone.0168160 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D et al (2015) Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A 112:E3574–E3581.  https://doi.org/10.1073/pnas.1501049112 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Li J, Ren J, Wang W, Wang G, Gu G, Wu X et al (2017) Risk factors and clinical outcomes of hypervirulent Klebsiella pneumoniae induced bloodstream infections. Eur J Clin Microbiol Infect Dis 37:679–689.  https://doi.org/10.1007/s10096-017-3160-z CrossRefPubMedGoogle Scholar
  56. 56.
    Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L, Delannoy-Vieillard AS et al (2014) Genomic definition of hypervirulent and multidrug-resistant klebsiella pneumoniae clonal groups. Emerg Infect Dis 20:1812–1820.  https://doi.org/10.3201/eid2011.140206 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ballén V, Sáez E, Benmessaoud R, Houssain T, Alami H, Barkat A et al (2015) First report of a Klebsiella pneumoniae ST466 strain causing neonatal sepsis harbouring the blaCTX-M-15gene in Rabat, Morocco. FEMS Microbiol Lett 362:1–4.  https://doi.org/10.1093/femsle/fnu026 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kilimanjaro Clinical Research InstituteKilimanjaro Christian Medical CentreMoshiTanzania
  2. 2.Kilimanjaro Christian Medical University CollegeMoshiTanzania
  3. 3.Centre for Medical Parasitology, Department of Immunology and MicrobiologyCopenhagen University HospitalCopenhagenDenmark
  4. 4.Centre for Biological Sequence AnalysisTechnical University of DenmarkLyngbyDenmark
  5. 5.East African Health Research CommissionBujumburaBurundi
  6. 6.DTU-Food, Centre for Genomic EpidemiologyTechnical University of DenmarkLyngbyDenmark

Personalised recommendations