Advertisement

Intestinal microbiome as a risk factor for urinary tract infections in children

  • Niko Paalanne
  • Aleksi Husso
  • Jarmo Salo
  • Oskari Pieviläinen
  • Mysore V. Tejesvi
  • Pirjo Koivusaari
  • Anna Maria Pirttilä
  • Tytti Pokka
  • Sampo Mattila
  • Juha Jyrkäs
  • Ari Turpeinen
  • Matti Uhari
  • Marjo Renko
  • Terhi Tapiainen
Original Article

Abstract

As urinary tract infection (UTI) pathogens originate from the gut, we hypothesized that the gut environment reflected by intestinal microbiome influences the risk of UTI. Our prospective case-control study compared the intestinal microbiomes of 37 children with a febrile UTI with those of 69 healthy children. We sequenced the regions of the bacterial 16S rRNA gene and used the LefSe algorithm to calculate the size of the linear discriminant analysis (LDA) effect. We measured fecal lactoferrin and iron concentrations and quantitative PCR for Escherichia coli. At the phylum level, there were no significant differences. At the genus level, Enterobacter was more abundant in UTI patients with an LDA score > 3 (log 10), while Peptostreptococcaceae were more abundant in healthy subjects with an LDA score > 3 (log 10). In total, 20 OTUs with significantly different abundances were observed. Previous use of antimicrobials did not associate with intestinal microbiome. The relative abundance of E. coli was 1.9% in UTI patients and 0.5% in controls (95% CI of the difference—0.8 to 3.6%). The mean concentration of E.coli in quantitative PCR was 0.14 ng/μl in the patients and 0.08 ng/μl in the controls (95% CI of the difference—0.04 to 0.16). Fecal iron and lactoferrin concentrations were similar between the groups. At the family and genus level, we noted several differences in the intestinal microbiome between children with UTI and healthy children, which may imply that the gut environment is linked with the risk of UTI in children.

Notes

Funding

This work was supported by Finnish Pediatric Research Association; Alma and K.A. Snellman Foundation and Juho Vainio Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The Ethics Committee of the Northern Ostrobothnia Hospital District at Oulu University Hospital, Oulu, Finland, evaluated the study plan and found it ethically acceptable (decision number 44/2015).

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Freedman AL, Urologic Diseases in America Project (2005) Urologic diseases in North America project: trends in resource utilization for urinary tract infections in children. J Urol 173(3):949–954CrossRefPubMedGoogle Scholar
  2. 2.
    Jantunen ME, Saxen H, Lukinmaa S, Ala-Houhala M, Siitonen A (2001) Genomic identity of pyelonephritogenic Escherichia coli isolated from blood, urine and faeces of children with urosepsis. J Med Microbiol 50(7):650–652CrossRefPubMedGoogle Scholar
  3. 3.
    Yamamoto S, Tsukamoto T, Terai A, Kurazono H, Takeda Y, Yoshida O (1997) Genetic evidence supporting the fecal-perineal-urethral hypothesis in cystitis caused by Escherichia coli. J Urol 157(3):1127–1129CrossRefPubMedGoogle Scholar
  4. 4.
    Marild S, Hansson S, Jodal U, Oden A, Svedberg K (2004) Protective effect of breastfeeding against urinary tract infection. Acta Paediatr 93(2):164–168CrossRefPubMedGoogle Scholar
  5. 5.
    Levy I, Comarsca J, Davidovits M, Klinger G, Sirota L, Linder N (2009) Urinary tract infection in preterm infants: the protective role of breastfeeding. Pediatr Nephrol 24(3):527–531CrossRefPubMedGoogle Scholar
  6. 6.
    Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I et al (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118(2):511–521CrossRefPubMedGoogle Scholar
  7. 7.
    Hesla HM, Stenius F, Jaderlund L, Nelson R, Engstrand L, Alm J et al (2014) Impact of lifestyle on the gut microbiota of healthy infants and their mothers-the ALADDIN birth cohort. FEMS Microbiol Ecol 90(3):791–801CrossRefPubMedGoogle Scholar
  8. 8.
    Masson PL, Heremans JF (1971) Lactoferrin in milk from different species. Comp Biochem Physiol B 39(1):119–129CrossRefPubMedGoogle Scholar
  9. 9.
    de Weerth C, Fuentes S, Puylaert P, de Vos WM (2013) Intestinal microbiota of infants with colic: development and specific signatures. Pediatrics 131(2):e550–e558CrossRefPubMedGoogle Scholar
  10. 10.
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60.  https://doi.org/10.1186/gb-2011-12-6-r60 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Malinen E, Kassinen A, Rinttila T, Palva A (2003) Comparison of real-time PCR with SYBR Green I or 5′-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology 149(Pt 1):269–277CrossRefPubMedGoogle Scholar
  12. 12.
    Brubaker L, Wolfe AJ (2017) The female urinary microbiota, urinary health and common urinary disorders. Ann Transl Med 5(2):34CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pearce MM, Zilliox MJ, Rosenfeld AB, Thomas-White KJ, Richter HE, Nager CW et al (2015) The female urinary microbiome in urgency urinary incontinence. Am J Obstet Gynecol 213(3):347.e1-11CrossRefPubMedGoogle Scholar
  14. 14.
    Vervoort J, Xavier BB, Stewardson A, Coenen S, Godycki-Cwirko M, Adriaenssens N et al (2015) Metagenomic analysis of the impact of nitrofurantoin treatment on the human faecal microbiota. J Antimicrob Chemother 70(7):1989–1992PubMedGoogle Scholar
  15. 15.
    Gregory KE, Samuel BS, Houghteling P, Shan G, Ausubel FM, Sadreyev RI et al (2016) Influence of maternal breast milk ingestion on acquisition of the intestinal microbiome in preterm infants. Microbiome. 4(1):68.  https://doi.org/10.1186/s40168-016-0214-x CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sordillo JE, Zhou Y, McGeachie MJ, Ziniti J, Lange N, Laranjo N et al (2017) Factors influencing the infant gut microbiome at age 3-6 months: findings from the ethnically diverse Vitamin D Antenatal Asthma Reduction Trial (VDAART). J Allergy Clin Immunol 139(2):482–491.e14CrossRefPubMedGoogle Scholar
  17. 17.
    Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S et al (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7(307):307ra152CrossRefPubMedGoogle Scholar
  18. 18.
    Savino F, Quartieri A, De Marco A, Garro M, Amaretti A, Raimondi S et al (2017) Comparison of formula-fed infants with and without colic revealed significant differences in total bacteria, Enterobacteriaceae and faecal ammonia. Acta Paediatr 106(4):573–578CrossRefPubMedGoogle Scholar
  19. 19.
    Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C et al (2014) Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63(4):559–566CrossRefPubMedGoogle Scholar
  20. 20.
    Hill CJ, Lynch DB, Murphy K, Ulaszewska M, Jeffery IB, O’Shea CA et al (2017) Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 5(1):4.  https://doi.org/10.1186/s40168-016-0213-y CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kontiokari T, Sundqvist K, Nuutinen M, Pokka T, Koskela M, Uhari M (2001) Randomised trial of cranberry-lingonberry juice and Lactobacillus GG drink for the prevention of urinary tract infections in women. BMJ 322(7302):1571CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ferrara P, Romaniello L, Vitelli O, Gatto A, Serva M, Cataldi L (2009) Cranberry juice for the prevention of recurrent urinary tract infections: a randomized controlled trial in children. Scand J Urol Nephrol 43(5):369–372CrossRefPubMedGoogle Scholar
  23. 23.
    Han Z, Willer T, Li L, Pielsticker C, Rychlik I, Velge P, et al. (2017) Influence of the gut microbiota composition on Campylobacter jejuni colonization in chickens. Infect Immun. 85(11).  https://doi.org/10.1128/IAI.00380-17
  24. 24.
    Rund SA, Rohde H, Sonnenborn U, Oelschlaeger TA (2013) Antagonistic effects of probiotic Escherichia coli Nissle 1917 on EHEC strains of serotype O104:H4 and O157:H7. Int J Med Microbiol 303(1):1–8CrossRefPubMedGoogle Scholar
  25. 25.
    Hwang IY, Koh E, Wong A, March JC, Bentley WE, Lee YS et al (2017) Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun 8:15028CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Carbonetti NH, Boonchai S, Parry SH, Vaisanen-Rhen V, Korhonen TK, Williams PH (1986) Aerobactin-mediated iron uptake by Escherichia coli isolates from human extraintestinal infections. Infect Immun 51(3):966–968PubMedPubMedCentralGoogle Scholar
  27. 27.
    Alteri CJ, Mobley HL (2007) Quantitative profile of the uropathogenic Escherichia coli outer membrane proteome during growth in human urine. Infect Immun 75(6):2679–2688CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Torres AG, Redford P, Welch RA, Payne SM (2001) TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun 69(10):6179–6185CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HL (2010) Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog 6(11):e1001187CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kortman GA, Mulder ML, Richters TJ, Shanmugam NK, Trebicka E, Boekhorst J et al (2015) Low dietary iron intake restrains the intestinal inflammatory response and pathology of enteric infection by food-borne bacterial pathogens. Eur J Immunol 45(9):2553–2567CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jaeggi T, Kortman GA, Moretti D, Chassard C, Holding P, Dostal A et al (2015) Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 64(5):731–742CrossRefPubMedGoogle Scholar
  32. 32.
    Krebs NF, Sherlock LG, Westcott J, Culbertson D, Hambidge KM, Feazel LM et al (2013) Effects of different complementary feeding regimens on iron status and enteric microbiota in breastfed infants. J Pediatr 163(2):416–423CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Qasem W, Azad MB, Hossain Z, Azad E, Jorgensen S, Castillo San Juan S et al (2017) Assessment of complementary feeding of Canadian infants: effects on microbiome & oxidative stress, a randomized controlled trial. BMC Pediatr 17(1):54.  https://doi.org/10.1186/s12887-017-0805-0 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mastromarino P, Capobianco D, Campagna G, Laforgia N, Drimaco P, Dileone A et al (2014) Correlation between lactoferrin and beneficial microbiota in breast milk and infant’s feces. Biometals 27(5):1077–1086CrossRefPubMedGoogle Scholar
  35. 35.
    King JC Jr, Cummings GE, Guo N, Trivedi L, Readmond BX, Keane V et al (2007) A double-blind, placebo-controlled, pilot study of bovine lactoferrin supplementation in bottle-fed infants. J Pediatr Gastroenterol Nutr 44(2):245–251CrossRefPubMedGoogle Scholar
  36. 36.
    Ochoa TJ, Chea-Woo E, Baiocchi N, Pecho I, Campos M, Prada A et al (2013) Randomized double-blind controlled trial of bovine lactoferrin for prevention of diarrhea in children. J Pediatr 162(2):349–356CrossRefPubMedGoogle Scholar
  37. 37.
    Buderus S, Boone JH, Lentze MJ (2015) Fecal lactoferrin: reliable biomarker for intestinal inflammation in pediatric IBD. Gastroenterol Res Pract 2015:578527CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Arao S, Matsuura S, Nonomura M, Miki K, Kabasawa K, Nakanishi H (1999) Measurement of urinary lactoferrin as a marker of urinary tract infection. J Clin Microbiol 37(3):553–557PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Niko Paalanne
    • 1
    • 2
  • Aleksi Husso
    • 3
  • Jarmo Salo
    • 1
    • 2
  • Oskari Pieviläinen
    • 1
    • 2
  • Mysore V. Tejesvi
    • 3
    • 4
  • Pirjo Koivusaari
    • 3
  • Anna Maria Pirttilä
    • 3
  • Tytti Pokka
    • 1
    • 2
  • Sampo Mattila
    • 5
  • Juha Jyrkäs
    • 5
  • Ari Turpeinen
    • 5
  • Matti Uhari
    • 1
    • 2
  • Marjo Renko
    • 1
    • 2
  • Terhi Tapiainen
    • 1
    • 2
  1. 1.Department of Pediatrics and AdolescenceOulu University HospitalOuluFinland
  2. 2.PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
  3. 3.Ecology and Genetics, Faculty of ScienceUniversity of OuluOuluFinland
  4. 4.Chain Antimicrobials LtdOuluFinland
  5. 5.Research Unit in Sustainable ChemistryUniversity of OuluOuluFinland

Personalised recommendations