Skip to main content

Advertisement

Log in

Evaluation of the Accelerate Pheno™ system for rapid identification and antimicrobial susceptibility testing of Gram-negative bacteria in bloodstream infections

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Identification and antimicrobial susceptibility testing (AST) are critical steps in the management of bloodstream infections. Our objective was to evaluate the performance of the Accelerate Pheno™ System, CE v1.2 software, for identification and AST of Gram-negative pathogens from positive blood culture bottles. A total of 104 bottles positive for Gram-negative bacteria collected from inpatients throughout our institution were randomly selected after Gram staining. The time-to-identification and AST results, and the raw AST results obtained by the Accelerate Pheno™ system and routine techniques (MALDI-TOF MS and VITEK®2, EUCAST guidelines) were compared. Any discrepant AST result was tested by microdilution. The Pheno™ significantly improved turn-around times for identification (5.3 versus 23.7 h; p < 0.0001) and AST (10.7 versus 35.1 h; p < 0.0001). Complete agreement between the Accelerate Pheno™ system and the MALDI-TOF MS for identification was observed for 96.2% of samples; it was 99% (98/99) for monomicrobial samples versus 40% (3/5) for polymicrobial ones. The overall categorical agreement for AST was 93.7%; it was notably decreased for beta-lactams (cefepime 84.4%, piperacillin-tazobactam 86.5%, ceftazidime 87.6%) or Pseudomonas aeruginosa (71.9%; with cefepime 33.3%, piperacillin-tazobactam 77.8%, ceftazidime 0%). Analysis of discrepant results found impaired performance of the Accelerate Pheno™ system for beta-lactams (except cefepime) in Enterobacteriales (six very major errors) and poor performance in P. aeruginosa. The Accelerate Pheno™ system significantly improved the turn-around times for bloodstream infection diagnosis. Nonetheless, improvements in the analysis of polymicrobial samples and in AST algorithms, notably beta-lactam testing in both P. aeruginosa and Enterobacteriales, are required for implementation in routine workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Raman G et al (2015) Appropriate initial antibiotic therapy in hospitalized patients with Gram-negative infections: systematic review and meta-analysis. BMC Infect Dis 15:395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kumar A et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34(6):1589–1596

    Article  PubMed  Google Scholar 

  3. Ferrer R et al (2014) Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med 42(8):1749–1755

    Article  PubMed  CAS  Google Scholar 

  4. Retamar P et al (2012) Impact of inadequate empirical therapy on the mortality of patients with bloodstream infections: a propensity score-based analysis. Antimicrob Agents Chemother 56(1):472–478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chen HC et al (2013) Outcome of inadequate empirical antibiotic therapy in emergency department patients with community-onset bloodstream infections. J Antimicrob Chemother 68(4):947–953

    Article  PubMed  CAS  Google Scholar 

  6. Valles J et al (2003) Community-acquired bloodstream infection in critically ill adult patients: impact of shock and inappropriate antibiotic therapy on survival. Chest 123(5):1615–1624

    Article  PubMed  Google Scholar 

  7. Anderson DJ et al (2014) Bloodstream infections in community hospitals in the 21st century: a multicenter cohort study. PLoS One 9(3):e91713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hernandez C et al (2014) Community-onset bacteraemia of unknown origin: clinical characteristics, epidemiology and outcome. Eur J Clin Microbiol Infect Dis 33(11):1973–1980

    Article  PubMed  CAS  Google Scholar 

  9. Hoenigl M et al (2014) Characteristics of hospital-acquired and community-onset blood stream infections, South-East Austria. PLoS One 9(8):e104702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Thaden JT et al (2017) Results from a 13-year prospective cohort study show increased mortality associated with bloodstream infections caused by Pseudomonas aeruginosa compared to other bacteria. Antimicrob Agents Chemother 61(6):e02671–16

  11. Moehring RW et al (2013) Delays in appropriate antibiotic therapy for Gram-negative bloodstream infections: a multicenter, community hospital study. PLoS One 8(10):e76225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Alevizakos M et al (2017) Bloodstream infections due to ESBL-producing enterobacteriaceae among patients with malignancy: a systematic review and meta-analysis. Int J Antimicrob Agents Agents 50(5):657–663

  13. Bielicki JA et al (2017) Surveillance of Gram-negative bacteria: impact of variation in current European laboratory reporting practice on apparent multidrug resistance prevalence in paediatric bloodstream isolates. Eur J Clin Microbiol Infect Dis 36(5):839–846

    Article  PubMed  CAS  Google Scholar 

  14. Meda M et al (2017) What are the critical steps in processing blood cultures? A prospective audit evaluating current practice of reporting blood cultures in a centralised laboratory serving secondary care hospitals. J Clin Pathol 70(4):361–366

    Article  PubMed  Google Scholar 

  15. Hayakawa K et al (2017) Impact of rapid identification of positive blood cultures using the Verigene system on antibiotic prescriptions: a prospective study of community-onset bacteremia in a tertiary hospital in Japan. PLoS One 12(7):e0181548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Osthoff M et al (2017) Impact of MALDI-TOF-MS-based identification directly from positive blood cultures on patient management: a controlled clinical trial. Clin Microbiol Infect 23(2):78–85

    Article  PubMed  CAS  Google Scholar 

  17. Seng P et al (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49(4):543–551

    Article  PubMed  CAS  Google Scholar 

  18. Martiny D et al (2013) Impact of rapid microbial identification directly from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry on patient management. Clin Microbiol Infect 19(12):E568–E581

    Article  PubMed  CAS  Google Scholar 

  19. Kok J et al (2011) Identification of bacteria in blood culture broths using matrix-assisted laser desorption-ionization Sepsityper and time of flight mass spectrometry. PLoS One 6(8):e23285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Buchan BW, Riebe KM, Ledeboer NA (2012) Comparison of the MALDI Biotyper system using Sepsityper specimen processing to routine microbiological methods for identification of bacteria from positive blood culture bottles. J Clin Microbiol 50(2):346–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Clerc O et al (2013) Impact of matrix-assisted laser desorption ionization time-of-flight mass spectrometry on the clinical management of patients with Gram-negative bacteremia: a prospective observational study. Clin Infect Dis 56(8):1101–1107

    Article  PubMed  CAS  Google Scholar 

  22. Vlek AL, Bonten MJ, Boel CH (2012) Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia. PLoS One 7(3):e32589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Idelevich EA et al (2014) Rapid identification of microorganisms from positive blood cultures by MALDI-TOF mass spectrometry subsequent to very short-term incubation on solid medium. Clin Microbiol Infect 20(10):1001–1006

    Article  PubMed  CAS  Google Scholar 

  24. Verroken A et al (2015) Reducing time to identification of positive blood cultures with MALDI-TOF MS analysis after a 5-h subculture. Eur J Clin Microbiol Infect Dis 34(2):405–413

    Article  PubMed  CAS  Google Scholar 

  25. Idelevich EA et al (2014) Acceleration of antimicrobial susceptibility testing of positive blood cultures by inoculation of Vitek 2 cards with briefly incubated solid medium cultures. J Clin Microbiol 52(11):4058–4062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Oviano M et al (2014) Rapid detection of Enterobacteriaceae producing extended spectrum beta-lactamases directly from positive blood cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Clin Microbiol Infect 20(11):1146–1157

    Article  PubMed  CAS  Google Scholar 

  27. Dortet L, Poirel L, Nordmann P (2015) Rapid detection of ESBL-producing Enterobacteriaceae in blood cultures. Emerg Infect Dis 21(3):504–507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Carvalhaes CG et al (2014) Detection of carbapenemase activity directly from blood culture vials using MALDI-TOF MS: a quick answer for the right decision. J Antimicrob Chemother 69(8):2132–2136

    Article  PubMed  CAS  Google Scholar 

  29. Dortet L et al (2014) Rapid detection of carbapenemase-producing Enterobacteriaceae from blood cultures. Clin Microbiol Infect 20(4):340–344

    Article  PubMed  CAS  Google Scholar 

  30. Compain F et al (2015) beta LACTA test for rapid detection of Enterobacteriaceae resistant to third-generation cephalosporins from positive blood cultures using briefly incubated solid medium cultures. J Med Microbiol 64(10):1256–1259

    Article  PubMed  CAS  Google Scholar 

  31. Salimnia H et al (2016) Evaluation of the FilmArray blood culture identification panel: results of a multicenter controlled trial. J Clin Microbiol 54(3):687–698

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ward C et al (2015) Performance evaluation of the Verigene(R) (Nanosphere) and FilmArray(R) (BioFire(R)) molecular assays for identification of causative organisms in bacterial bloodstream infections. Eur J Clin Microbiol Infect Dis 34(3):487–496

    Article  PubMed  CAS  Google Scholar 

  33. Arroyo MA, Denys GA (2017) Parallel evaluation of the MALDI Sepsityper and Verigene BC-GN assays for rapid identification of Gram-negative bacilli from positive blood cultures. J Clin Microbiol 55(9):2708–2718

  34. Siu GK et al (2015) Performance evaluation of the Verigene Gram-positive and Gram-negative blood culture test for direct identification of bacteria and their resistance determinants from positive blood cultures in Hong Kong. PLoS One 10(10):e0139728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ledeboer NA et al (2015) Identification of Gram-negative bacteria and genetic resistance determinants from positive blood culture broths by use of the Verigene Gram-negative blood culture multiplex microarray-based molecular assay. J Clin Microbiol 53(8):2460–2472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 49(11):1749–1755

    Article  PubMed  CAS  Google Scholar 

  37. Marschal M et al (2017) Evaluation of the Accelerate Pheno system for fast identification and antimicrobial susceptibility testing from positive blood cultures in bloodstream infections caused by Gram-negative pathogens. J Clin Microbiol 55(7):2116–2126

    Article  PubMed  PubMed Central  Google Scholar 

  38. Charnot-Katsikas A et al (2017) Use of Accelerate Pheno system for identification and antimicrobial susceptibility testing (ID/AST) of pathogens in positive blood cultures and impact on time to results and workflow. J Clin Microbiol 56(1):e01166–17

  39. Lutgring JD et al (2018) Evaluation of the Accelerate Pheno system: results from two academic medical centers. J Clin Microbiol 56(4):e01672–17

  40. Timbrook TT et al (2017) The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis 64(1):15–23

    Article  PubMed  Google Scholar 

  41. Thiemann S, Smit N, Strowig T (2016) Antibiotics and the intestinal microbiome : individual responses, resilience of the ecosystem, and the susceptibility to infections. Curr Top Microbiol Immunol 398:123–146

    PubMed  CAS  Google Scholar 

  42. Becattini S, Taur Y, Pamer EG (2016) Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med 22(6):458–478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Brazelton de Cardenas JN et al (2017) Evaluation of rapid phenotypic identification and antimicrobial susceptibility testing in a pediatric oncology center. Diagn Microbiol Infect Dis 89(1):52–57

  44. Pancholi P et al (2018) Multicenter evaluation of the Accelerate PhenoTest BC kit for rapid identification and phenotypic antimicrobial susceptibility testing using Morphokinetic cellular analysis. J Clin Microbiol 56(4):e01329–17

  45. Fiori B et al (2016) Optimized use of the MALDI BioTyper system and the FilmArray BCID panel for direct identification of microbial pathogens from positive blood cultures. J Clin Microbiol 54(3):576–584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lee CC et al (2017) Timing of appropriate empirical antimicrobial administration and outcome of adults with community-onset bacteremia. Crit Care 21(1):119

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pavlaki M et al (2013) Polymicrobial bloodstream infections: epidemiology and impact on mortality. J Glob Antimicrob Resist 1(4):207–212

    Article  PubMed  Google Scholar 

  48. Sancho S et al (2012) Impact of nosocomial polymicrobial bloodstream infections on the outcome in critically ill patients. Eur J Clin Microbiol Infect Dis 31(8):1791–1796

    Article  PubMed  CAS  Google Scholar 

  49. Micek ST et al (2010) Empiric combination antibiotic therapy is associated with improved outcome against sepsis due to Gram-negative bacteria: a retrospective analysis. Antimicrob Agents Chemother 54(5):1742–1748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Martinez JA et al (2010) Influence of empiric therapy with a beta-lactam alone or combined with an aminoglycoside on prognosis of bacteremia due to Gram-negative microorganisms. Antimicrob Agents Chemother 54(9):3590–3596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Nguyen HM, Shier KL, Graber CJ (2014) Determining a clinical framework for use of cefepime and beta-lactam/beta-lactamase inhibitors in the treatment of infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 69(4):871–880

    Article  PubMed  CAS  Google Scholar 

  52. Harris PN, Tambyah PA, Paterson DL (2015) Beta-lactam and beta-lactamase inhibitor combinations in the treatment of extended-spectrum beta-lactamase producing Enterobacteriaceae: time for a reappraisal in the era of few antibiotic options? Lancet Infect Dis 15(4):475–485

    Article  PubMed  CAS  Google Scholar 

  53. Gudiol C et al (2017) Efficacy of beta-lactam/beta-lactamase inhibitor combinations for the treatment of bloodstream infection due to extended-spectrum-beta-lactamase-producing Enterobacteriaceae in hematological patients with neutropenia. Antimicrob Agents Chemother 61(8):e00164–17

Download references

Acknowledgements

We thank Dr. Philip Robinson (DRCI, Hospices Civils de Lyon, France) for helping in the manuscript preparation.

Funding

Accelerate Diagnostics, Inc., Tucson, AZ, USA provided for the study period two Accelerate Pheno™ system modules, kits, and technical support free of charge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghislaine Descours.

Ethics declarations

Conflict of interest

Accelerate Diagnostics had no role in study design, data collection and analysis, publication decision, or preparation of the manuscript.

The authors declare that they have no conflict of interest.

Statement of informed consent and ethical approval

In accordance with legislation in place at the time of the study, a non-opposition consent was obtained from all patients and information was given to patients via the hospital patient information leaflet that describes how blood samples derived from regular clinical care may be used, and which was approved by the hospital ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Descours, G., Desmurs, L., Hoang, T.L.T. et al. Evaluation of the Accelerate Pheno™ system for rapid identification and antimicrobial susceptibility testing of Gram-negative bacteria in bloodstream infections. Eur J Clin Microbiol Infect Dis 37, 1573–1583 (2018). https://doi.org/10.1007/s10096-018-3287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-018-3287-6

Keywords

Navigation