Retrospective surveillance of antibiotic use in maternity wards and neonatal intensive care units in Saint Petersburg, Russia

  • Timofey L. Galankin
  • Alexey S. KolbinEmail author
  • Sergey V. Sidorenko
  • Alexey A. Kurylev
  • Elena A. Malikova
  • Yuri V. Lobzin
  • Dmitry O. Ivanov
  • Nikolay P. Shabalov
  • Anton V. Mikhailov
  • Nikolay N. Klimko
  • Gennadiy V. Dolgov
Original Article


Antibiotic overuse in infants is associated with an increased risk of serious adverse events. Development of antibiotic stewardship programs aimed at reducing overall antibiotic consumption requires epidemiological surveillance. Retrospective surveillance and evaluation of all antibiotics provided to every infant admitted to maternal wards or neonatal intensive care units (NICUs) from 01 January 2014 to 31 December 2014 were performed in five medical centers of Saint Petersburg, Russia. Types of antibiotics and dates of administration were recorded. Antibiotic use was quantified by length of therapy (length of therapy, LOT, per 1000 patient-days, PD) and days of therapy (DOT/1000 PD). An additional parameter named “instant DOT/1000 PD” was introduced by authors for assessment of longitudinal patterns of administrations. Antibiotic load was 825.6 DOT/1000 PD in maternity wards and 1425.8 DOT/1000 PD in the NICUs. These levels are two to four times higher than DOTs reported in the USA for a level III NICU (348 DOT/1000PD). Antibiotic load was associated with the length of hospital stay (LOS) and birth weight. These associations were distorted when assessed using the conventional parameters, LOT and DOT, because they do not reflect the longitudinal component of treatment and underestimate antibiotic load when a patient stays in hospital without treatment. The proposed additional parameter successfully overcame these flaws and uncovered hidden associations. Severe overuse of antibiotics may be taking place in Russia and antibiotic stewardship development should be urged. Instant DOT/1000 PD is a more powerful tool in assessing treatment patterns than DOT/1000 PD.


Antibiotic Neonate Stewardship Days of treatment 



The study was sponsored by the Local Compulsory Medical Insurance Fund of Saint Petersburg, Russia.

Compliance with ethical standards

Publication of the materials

Preliminary results of this study were published in a form of an abstract (European Association for Clinical Pharmacology and Therapeutics Congress in Prague, 2017):
  • T. Galankin, A. Kolbin, S. Sidorenko, Y. Lobzin, D. Ivanov, N. Shabalov, A. Mikhailov, N. Klimko, G. Dolgov, A. Shmidt, A. Kurylev, E. Malikova. Pharmacoepidemiology of Antimicrobials in Neonatology in Russia, Retrospective Analysis of Medical Records. Clinical Theraputics, August 2017, Volume 39, Issue 8, Pages e1–e2. DOI:

Conflict of interest

Alexey S. Kolbin participates in research and development with subsequent preparation of reports, writing articles and preparing presentations for the following companies (in alphabetical order): Allergen, Amgen, Astellas, Boehringer Ingelheim, Novartis, Novo Nordisk, Pfizer, Rosh, R-Pharma, and Sanofi-Aventis. None of these companies are involved in this study.

The other co-authors confirm the absence of any conflict of interest which must be reported.

Ethical approval

The study was undertaken after obtaining approvals from the local ethics committees of all five centers where the medical data were collected:
  • Children’s Hospital No. 1, Saint Petersburg, Russia: adjudication reference number 5/15, June 30, 2015.

  • S.M. Kirov Military Medical Academy, Saint Petersburg, Russia: adjudication reference number 167, October 20, 2015.

  • Maternity Hospital No. 16, Saint Petersburg, Russia; Maternity Hospital No. 17, Saint Petersburg, Russia; Children’s Hospital No. 17, Saint Petersburg, Russia, have a joint ethics committee that is located at LLC “PharmNadzor” (“Pharmacovigilance”), adjudication reference number 31, June 16, 2015.

Informed consent

The data collection was retrospective, no special informed consent was needed, taking into account that any personal identifiers of the patients were removed from any study files. The standard consent to the processing of personal data signed by mothers on admission to hospital was considered sufficient by the local ethics committees.


  1. 1.
    WHO, 2014. Antimicrobial resistance: global report on surveillance. 232 pp.Google Scholar
  2. 2.
    CDC, 2013. Antibiotic resistance threats in the United States, 2013. 113 pp.Google Scholar
  3. 3.
    Hamad B (2010) The antibiotics market. Nat Rev Drug Discov 9(9):675–676. CrossRefPubMedGoogle Scholar
  4. 4.
    Donadio S, Maffioli S, Monciardini P et al (2010) Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot (Tokyo) 63(8):423–430. CrossRefGoogle Scholar
  5. 5.
    Clark RH, Bloom BT, Spitzer AR et al (2006) Reported medication use in the neonatal intensive care unit: data from a large national data set. Pediatrics 117:1979–1987CrossRefPubMedGoogle Scholar
  6. 6.
    Grohskopf LA, Huskins WC, Sinkowitz-Cochran RL et al (2005) Pediatric Prevention Network. Use of antimicrobial agents in United States neonatal and pediatric intensive care patients. Pediatr Infect Dis J 24:766–773CrossRefPubMedGoogle Scholar
  7. 7.
    Tsai MH, Chu SM, Hsu JF et al (2014) Risk factors and outcomes for multidrug-resistant Gram-negative bacteremia in the NICU. Pediatrics 133:e322–e329CrossRefPubMedGoogle Scholar
  8. 8.
    de Man P, Verhoeven BA, Verbrugh HA et al (2000) An antibiotic policy to prevent emergence of resistant bacilli. Lancet 355:973–978CrossRefPubMedGoogle Scholar
  9. 9.
    Cotten CM, McDonald S, Stoll B et al (2006) National Institute for Child Health and Human Development Neonatal Research Network. The association of third-generation cephalosporin use and invasive candidiasis in extremely low birth-weight infants. Pediatrics 118:717–722CrossRefPubMedGoogle Scholar
  10. 10.
    Cotten CM, Taylor S, Stoll B et al (2009) NICHD Neonatal Research Network. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics 123:58–66CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kuppala VS, Meinzen-Derr J, Morrow AL et al (2011) Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants. J Pediatr 159:720–725CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Saiman L, Ludington E, Dawson JD et al (2001) National Epidemiology of Mycoses Study Group. Risk factors for Candida species colonization of neonatal intensive care unit patients. Pediatr Infect Dis J 20:1119–1124CrossRefPubMedGoogle Scholar
  13. 13.
    Alexander VN, Northrup V, Bizzarro MJ (2011) Antibiotic exposure in the newborn intensive care unit and the risk of necrotizing enterocolitis. J Pediatr 159:392–397CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lee JH, Hornik CP, Benjamin DK Jr et al (2013) Risk factors for invasive candidiasis in infants >1500 g birth weight. Pediatr Infect Dis J 32:222–226CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Arrieta MC, Stiemsma LT, Dimitriu PA et al (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7(307):307ra152. CrossRefPubMedGoogle Scholar
  16. 16.
    Barlow GM, Yu A, Mathur R (2015) Role of the gut microbiome in obesity and diabetes mellitus. Nutr Clin Pract 30(6):787–797. CrossRefPubMedGoogle Scholar
  17. 17.
    Araujo da Silva AR, Albernaz de Almeida Dias DC, Marques AF, Biscaia di Biase C, Murni IK, Dramowski A, Sharland M, Huebner J, Zingg W. Role of antimicrobial stewardship programmes in children: a systematic review. J Hosp Infect. 2017 Aug 12. pii: S0195-6701(17)30447-4. doi: 10.1016/j.jhin.2017.08.003.Google Scholar
  18. 18.
    Barlam TF, Cosgrove SE, Abbo LM et al (2016) Infectious Diseases Society of America; Society for Healthcare Epidemiology of America. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 62(10):e51–e77. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Шабалов Н.П. Неонатология. Учебное пособие. В 2-х томах. 5-е изд., испр. и доп. — М.: МЕДпресс-информ; 2009. [Shabalov NP. Neonatologiya. Uchebnoe posobie. In 2 Volumes. 5th ed., enlarged. Moscow: MEDpress-inform; 2009. (In Russ)]Google Scholar
  20. 20.
    Руководство по перинатологии / Под ред. Иванова Д.О. — СПб.: Информ-Навигатор; 2015. — 1216 с. [Rukovodstvo po perinatologii. Ed by Ivanov DO. St. Petersburg: Inform-Navigator; 2015. 1216 p. (In Russ)]Google Scholar
  21. 21.
    Cantey JB, Wozniak PS, Sánchez PJ (2015) Prospective surveillance of antibiotic use in the neonatal intensive care unit: results from the SCOUT study. Pediatr Infect Dis J 34(3):267–272. CrossRefPubMedGoogle Scholar
  22. 22.
    Ibrahim OM, Polk RE (2014) Antimicrobial use metrics and benchmarking to improve stewardship outcomes: methodology, opportunities, and challenges. Infect Dis Clin North Am 28:195–214CrossRefPubMedGoogle Scholar
  23. 23.
    Gravatt LA, Pakyz AL (2013) Challenges in measuring antibiotic consumption. Curr Infect Dis Rep 15:559–563CrossRefPubMedGoogle Scholar
  24. 24.
    Berrington A (2010) Antimicrobial prescribing in hospitals: be careful what you measure. J Antimicrob Chemother 65:163–168CrossRefPubMedGoogle Scholar
  25. 25.
    Mandy B, Koutny E, Cornette C et al (2004) Methodological validation of monitoring indicators of antibiotics use in hospitals. Pharm World Sci 26:90–95CrossRefPubMedGoogle Scholar
  26. 26.
    WHO Collaborating Centre for Drug Statistics Methodology. Oslo, Norway: 2017. Guidelines for ATC classification and DDD assignment 2018. Accessed April 22, 2018
  27. 27.
    Turner S (1999) Unregistered and off-label drug use in paediatric inpatients. Aust J Hosp Pharm 29(5):265–268. CrossRefGoogle Scholar
  28. 28.
    Vaniya HV, Agrawal JM, Patel NM et al (2014) Antimicrobial drug utilization pattern in neonatal sepsis in a tertiary care hospital. J Clinical Experimental Res 2(2):110–114. CrossRefGoogle Scholar
  29. 29.
    Patel Brijal S, KubavatAmita R, Sondarva Divyesh B, Piparva Kiran G (2015) Drug utilization study in neonatal intensive care unit at tertiary care hospital, Rajkot, Gujarat: a prospective study. World J Pharmacy Pharmaceutical Sci 4(7):2034–2042Google Scholar
  30. 30.
    Yang YN, Tseng HI, Yang SN et al (2012) A strategy for reduction of antibiotic use in new patients admitted to a neonatal intensive care unit. Pediatr Neonatol 53(4):245–251. CrossRefPubMedGoogle Scholar
  31. 31.
    Suryawanshi S, Pandit V, Suryawanshi P, Panditrao A (2015) Antibiotic prescribing pattern in a tertiary level neonatal intensive care unit. J Clin Diagn Res 9(11):FC21–FC24. PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kimberlin DW, Brady MT, Jackson MA, Long SS, editors. Red Book: 2015 Report of the Committee on Infectious Diseases. 30th ed. American academy of pediatrics; 2015. 1151 p.Google Scholar
  33. 33.
    Bradley JS, Nelson JD. Nelsons pediatric antimicrobial therapy. 22nd ed. American Academy of Pediatrics; 2016. 278 p.Google Scholar
  34. 34.
    Conroy S, McIntyre J, Choonara I. Unlicensed and off label drug use in neonates. Arch Dis Child Fetal Neonatal Ed. 1999;80(2):142−145. doi: 10.1136/fn.80.2.f142Google Scholar
  35. 35.
    O’Donnell CP, Stone RJ, Morley CJ (2002) Unlicensed and off-label drug use in an Australian neonatal intensive care unit. Pediatrics 110(5):e52. CrossRefPubMedGoogle Scholar
  36. 36.
    Колбин А.С., Шабалов Н.П., Карпов О.И. Фармакоэпидемиология противоинфекционных средств у недоношенных новорожденных // Педиатрия. Журнал им. Г.Н. Сперанского. — 2004. — Т.83. — №5 — С. 69–73. [Kolbin AS, Shabalov NP, Karpov OI. Pharmacoepidemiology of anti-infectious medicaments in premature born neonates. Pediatriia. 2004;83(5):69–73. (In Russ).]Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Timofey L. Galankin
    • 1
  • Alexey S. Kolbin
    • 1
    • 2
    Email author
  • Sergey V. Sidorenko
    • 3
  • Alexey A. Kurylev
    • 1
  • Elena A. Malikova
    • 1
  • Yuri V. Lobzin
    • 3
  • Dmitry O. Ivanov
    • 4
  • Nikolay P. Shabalov
    • 5
  • Anton V. Mikhailov
    • 6
  • Nikolay N. Klimko
    • 6
  • Gennadiy V. Dolgov
    • 5
  1. 1.Pavlov First Saint Petersburg State Medical UniversitySaint PetersburgRussian Federation
  2. 2.Saint Petersburg State UniversitySaint PetersburgRussian Federation
  3. 3.Research Institute of Childhood InfectionsSaint PetersburgRussian Federation
  4. 4.Saint Petersburg State Pediatric Medical UniversitySaint PetersburgRussian Federation
  5. 5.S.M. Kirov Military Medical AcademySaint PetersburgRussian Federation
  6. 6.North-Western State Medical University named after I.I. MechnikovSaint PetersburgRussian Federation

Personalised recommendations