Phenotypic detection of clinical isolates of Haemophilus influenzae with altered penicillin-binding protein 3

  • A. Aguirre-QuiñoneroEmail author
  • I. C. Pérez del Molino
  • C. García de la Fuente
  • M. C. Sanjuán
  • J. Agüero
  • L. Martínez-Martínez
Original Article


The aims of this study were to determine the correlation of mutations in the ftsI gene (coding for PBP3) of Haemophilus influenzae with aminopenicillin resistance and to evaluate the 2017 European Committee for Antibiotic Susceptibility Testing (EUCAST) guidelines for clinical categorization of ampicillin, amoxicillin, and amoxicillin-clavulanate for strains with mutated PBP3 conferring resistance (rPBP3). A panel of 91 H. influenzae isolates was genetically characterized by sequencing of the fstI gene. For all the studied isolates, a screening with benzylpenicillin 1U (BP1) was carried out and minimum inhibitory concentrations (MICs) of ampicillin, amoxicillin, and amoxicillin-clavulanate were tested and interpreted according to EUCAST recommendations. ftsI sequence analysis revealed a total of 14 different amino acid substitutions in PBP3. The substitution patterns most commonly observed were [D350N, M377I, A502V, N526K] among the bla-positive rPBP3 strains (37.5%) and [D350N, A502T, N526K] among the bla-negative rPBP3 strains (24.5%). Screening with BP1 was able to correctly categorize 100% of the bla-negative sPBP3 strains, 100% of the bla-positive strains, and 92% of the bla-negative rPBP3 ones. Only 29% of the bla-negative rPBP3 strains evaluated displayed ampicillin MICs above the current EUCAST resistant breakpoint defined at 1 μg/ml. The PBP3 substitution patterns of the strains evaluated are similar to the ones observed in previous Spanish and European studies. Although the screening with BP1 proved to be adequate in the detection of bla-negative rPBP3 strains, these cannot be reliably identified by current 2018 EUCAST breakpoints for ampicillin.


Haemophilus influenzae β-lactam resistance ftsI rPBP3 EUCAST 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study, formal consent is not required.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Ubukata K, Shibasaki Y, Yamamoto K, Chiba N, Hasegawa K et al (2001) Association of amino acid substitutions in penicillin-binding protein 3 with beta-lactam resistance in beta-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob Agents Chemother 45:1693–1699CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Osaki Y, Sanbongi M, Ishikawa H, Kataoka T, Suzuki K et al (2005) Genetic approach to study the relationship between penicillin-binding protein 3 mutations and Haemophilus influenzae beta-lactam resistance by using site-directed mutagenesis and gene recombinants. Antimicrob Agents Chemother 49:2834–2839CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tristram S, Jacobs MR, Appelbaum PC (2007) Antimicrobial resistance in Haemophilus influenzae. Clin Microbiol Rev 20:368–389CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kaczmarek FS, Gootz TD, Dib-Hajj F, Shang W, Hallowell S et al (2004) Genetic and molecular characterization of beta-lactamase-negative ampicillin-resistant Haemophilus influenzae with unusually high resistance to ampicillin. Antimicrob Agents Chemother 48:1630–1639CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    García-Cobos S, Campos J, Cercenado E, Román F, Lázaro E et al (2008) Antibiotic resistance in Haemophilus influenzae decreased, except for beta-lactamase-negative amoxicillin-resistant isolates, in parallel with community antibiotic consumption in Spain from 1997 to 2007. Antimicrob Agents Chemother 52:2760–2766CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hasegawa K, Chiba N, Kobayashi R, Murayama SY, Iwata S et al (2004) Rapidly increasing prevalence of beta-lactamase-nonproducing, ampicillin-resistant Haemophilus influenzae type b in patients with meningitis. Antimicrob Agents Chemother 48:1509–1514CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Matic V, Bozdogan B, Jacobs MR, Ubukata K, Appelbaum PC (2003) Contribution of beta-lactamase and PBP amino acid substitutions to amoxicillin/clavulanate resistance in beta-lactamase-positive, amoxicillin/clavulanate-resistant Haemophilus influenzae. J Antimicrob Chemother 52:1018–1021CrossRefPubMedGoogle Scholar
  8. 8.
    Karpanoja P, Nissinen A, Huovinen P, Sarkkinen H (2004) Disc diffusion susceptibility testing of Haemophilus influenzae by NCCLS methodology using low-strength ampicillin and co-amoxiclav discs. J Antimicrob Chemother 53:660–663CrossRefPubMedGoogle Scholar
  9. 9.
    Norskov-Lauritsen N, Ridderberg W, Erikstrup LT, Fuursted K (2011) Evaluation of disk diffusion methods to detect low-level beta-lactamase-negative ampicillin resistant Haemophilus influenzae. APMIS 119:385–392CrossRefPubMedGoogle Scholar
  10. 10.
    Tristram S, Nichols S (2006) A multiplex PCR for beta-lactamase genes of Haemophilus influenzae and description of a new blaTEM promoter variant. J Antimicrob Chemother 58:183–185CrossRefPubMedGoogle Scholar
  11. 11.
    Dabernat H, Delmas C, Seguy M, Pelissier R, Faucon G et al (2002) Diversity of beta-lactam resistance-conferring amino acid substitutions in penicillin-binding protein 3 of Haemophilus influenzae. Antimicrob Agents Chemother 46:2208–2218CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 7.0 2017.
  13. 13.
    Skaare D, Lia A, Hannisdal A, Tveten Y, Matuschek E et al (2015) Haemophilus influenzae with non-beta-lactamase-mediated beta-lactam resistance: easy to find but hard to categorize. J Clin Microbiol 53:3589–3595CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    García-Cobos S, Campos J, Román F, Carrera C, Pérez-Vázquez M et al (2008) Low beta-lactamase-negative ampicillin-resistant Haemophilus influenzae strains are best detected by testing amoxicillin susceptibility by the broth microdilution method. Antimicrob Agents Chemother 52:2407–2414CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hasegawa K, Yamamoto K, Chiba N, Kobayashi R, Nagai K et al (2003) Diversity of ampicillin-resistance genes in Haemophilus influenzae in Japan and the United States. Microb Drug Resist 9:39–46CrossRefPubMedGoogle Scholar
  16. 16.
    Barbosa AR, Giufre M, Cerquetti M, Bajanca-Lavado MP (2011) Polymorphism in ftsI gene and beta-lactam susceptibility in Portuguese Haemophilus influenzae strains: clonal dissemination of beta-lactamase-positive isolates with decreased susceptibility to amoxicillin/clavulanic acid. J Antimicrob Chemother 66:788–796CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Skaare D, Allum AG, Anthonisen IL, Jenkins A, Lia A et al (2009) Mutant ftsI genes in the emergence of penicillin-binding protein-mediated beta-lactam resistance in Haemophilus influenzae in Norway. Clin Microbiol Infect 16:1117–1124CrossRefPubMedGoogle Scholar
  18. 18.
    Cherkaoui A, Diene SM, Renzi G, Francois P, Schrenzel J (2015) Ampicillin-resistant Haemophilus influenzae isolates in Geneva: serotype, antimicrobial susceptibility, and β-lactam resistance mechanisms. Eur J Clin Microbiol Infect Dis 34:1937–1945CrossRefPubMedGoogle Scholar
  19. 19.
    Jansen WT, Verel A, Beitsma M, Verhoef J, Milatovic D (2006) Longitudinal European surveillance study of antibiotic resistance of Haemophilus influenzae. J Antimicrob Chemother 58:873–877CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Service of MicrobiologyUniversity Hospital Marqués de Valdecilla-IDIVALSantanderSpain
  2. 2.Service of MicrobiologyUniversity Hospital Marqués de Valdecilla-IFIMAVSantanderSpain
  3. 3.Department of Molecular BiologyUniversity of CantabriaSantanderSpain
  4. 4.Unit of MicrobiologyHospital Universitario Reina SofíaCórdobaSpain
  5. 5.Department of MicrobiologyUniversity of CórdobaCórdobaSpain
  6. 6.Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)CórdobaSpain

Personalised recommendations