Chromosomally encoded and plasmid-mediated polymyxins resistance in Acinetobacter baumannii: a huge public health threat

  • William Gustavo LimaEmail author
  • Mara Cristina Alves
  • Waleska Stephanie Cruz
  • Magna Cristina Paiva


Acinetobacter baumannii is an opportunistic pathogen associated with nosocomial and community infections of great clinical relevance. Its ability to rapidly develop resistance to antimicrobials, especially carbapenems, has re-boosted the prescription and use of polymyxins. However, the emergence of strains resistant to these antimicrobials is becoming a critical issue in several regions of the world because very few of currently available antibiotics are effective in these cases. This review summarizes the most up-to-date knowledge about chromosomally encoded and plasmid-mediated polymyxins resistance in A. baumannii. Different mechanisms are employed by A. baumannii to overcome the antibacterial effects of polymyxins. Modification of the outer membrane through phosphoethanolamine addition, loss of lipopolysaccharide, symmetric rupture, metabolic changes affecting osmoprotective amino acids, and overexpression of efflux pumps are involved in this process. Several genetic elements modulate these mechanisms, but only three of them have been described so far in A. baumannii clinical isolates such as mutations in pmrCAB, lpxACD, and lpsB. Elucidation of genotypic profiles and resistance mechanisms are necessary for control and fight against resistance to polymyxins in A. baumannii, thereby protecting this class for future treatment.


Outer membrane Lipid A Phosphoethanolamine transferase Efflux pumps Osmoprotective amino acids mcr 



We thank UFSJ/PPGCF for the availability of bibliographic support. W.G.L. is grateful to Fundação de Amparo à Pesquisa de Minas Gerais (FAPMIG) for a graduate fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Lăzureanu V, Poroșnicu M, Gândac C, Moisil T, Bădițoiu L, Laza R, Musta V, Crisan A, Marinesco AR (2016) Infection with Acinetobacter baumannii in an intensive care unit in the Western part of Romania. BMC Infect Dis 16:24–28Google Scholar
  2. 2.
    Bardbari AM, Arabestani MR, Karami M, Keramat F, Aghazadeh H, Alikhani MY, Bagheri KP (2018) Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis.
  3. 3.
    Daitch V, Akayzen Y, Abu-Ghanem Y, Eliakim-Raz N, Paul M, Leibovici L, Yahav D (2018) Secular trends in the appropriateness of empirical antibiotics treatment in patients with bacteremia: a comparison between three prospective cohorts. Eur J Clin Microbiol Infect Dis.
  4. 4.
    Bergogne-Berezin E, Towner KJ (1996) Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 9:148–165PubMedPubMedCentralGoogle Scholar
  5. 5.
    Sebeny PJ, Riddle MS, Petersen K (2008) Acinetobacter baumannii skin and soft-tissue infection associated with war trauma. Clin Infect Dis 47:444–449CrossRefPubMedGoogle Scholar
  6. 6.
    Sturiale M, Corpina C, Sturiale L (2016) Endocarditis due to Acinetobacter baumannii. Int J Cardiol 209:161–163CrossRefPubMedGoogle Scholar
  7. 7.
    Koulenti D, Lisboa T, Brun-Buisson C, Krueger W, Macor A, Sole-Violan J, Diaz E, Topeli A, DeWaele J, Carneiro A, Martin-Loeches I, Armaganidis A, Rello J, EU-VAP/CAP Study Groupm (2009) Spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units. Crit Care Med 37:2360–2368CrossRefPubMedGoogle Scholar
  8. 8.
    Vincent J-L, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, Moreno R, Lipman J, Gomersall C, Sakr Y, Reinhart K, EPIC II Group of Investigators (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329CrossRefPubMedGoogle Scholar
  9. 9.
    Selasi GN, Nicholas A, Jeon H, Lee YC, Yoo JR, Heo ST, Lee JC (2015) Genetic basis of antimicrobial resistance and clonal dynamics of carbapenem-resistant Acinetobacter baumannii sequence type 191 in a Korean hospital. Infect Genet Evol 36:1–7CrossRefPubMedGoogle Scholar
  10. 10.
    El-Mahdy TS, Al-Agamy MH, Al-Qahtani AA, Shibl AM (2016) Detection of blaOXA-23-like and blaNDM-1 in Acinetobacter baumannii from the Eastern Region, Saudi Arabia. Microb Drug Resist 23:115–121CrossRefPubMedGoogle Scholar
  11. 11.
    Livermore DM, Hill RLR, Thomson H, Charlett A, Turton JF, Pike R, Patel BC, Manuel R, Gillespie S, Barrett SP, Cumberland N, Twagira M, C-MRAB Study Group (2010) Antimicrobial treatment and clinical outcome for infections with carbapenem- and multiply-resistant Acinetobacter baumannii around London. Int J Antimicrob Agents 35:19–24CrossRefPubMedGoogle Scholar
  12. 12.
    Lockhart SR, Abramson MA, Beekmann SE, Gallagher G, Riedel S, Diekema DJ, Quinn JP, Doern GV (2009) Antimicrobial resistance among gram-negative bacilli causing infections in intensive care unit patients in the United States between 1993 and 2004. J Clin Microbiol 45:3352–3359CrossRefGoogle Scholar
  13. 13.
    Jean SS, Hsueh PR (2011) High burden of antimicrobial resistance in Asia. Int J Antimicrob Agents 37:291–295CrossRefPubMedGoogle Scholar
  14. 14.
    Gaynes R, Edwards JR, National Nosocomial Infections Surveillance System (2005) Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect 41:848–854CrossRefGoogle Scholar
  15. 15.
    Jeannot K, Bolard A, Plésiat P (2017) Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents 49:526–535CrossRefPubMedGoogle Scholar
  16. 16.
    Rossi F, Girardello R, Cury AP, Di Gioia TSR, Almeida-Junior JN, Duarte AJS (2017) Emergence of colistin resistance in the largest university hospital complex of São Paulo, Brazil, over five years. Braz J Infect Dis 21:98–101CrossRefPubMedGoogle Scholar
  17. 17.
    Georgis M (2016) Carbapenem resistance: overview of the problem and future perspective therapeutic advances in infectious diseases. Ther Adv Infect Dis 3:15–21CrossRefGoogle Scholar
  18. 18.
    Oikonomou O, Sarrou S, Papagiannitsis CC, Georgiadou S, Mantzarlis K, Zakynthinos E, Zakynthinos E, Dalekos GN, Petinaki E (2015) Rapid dissemination of colistin and carbapenem resistant Acinetobacter baumannii in Central Greece: mechanisms of resistance, molecular identification, and epidemiological data. BMC Infect Dis 15:1–6CrossRefGoogle Scholar
  19. 19.
    Bakour S, Olaitan AO, Ammari H, Touati A, Saoudi S, Saoudi K, Rolain JM (2014) Emergence of colistin- and carbapenem-resistant Acinetobacter baumannii ST2 2015 clinical isolate in Algeria: first case report. Microb Drug Resist 21:279–285CrossRefGoogle Scholar
  20. 20.
    Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323PubMedPubMedCentralGoogle Scholar
  21. 21.
    Viehman JA, Nguyen MH, Doi Y (2014) Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections. Drugs 74:1315–1333CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lynn WA, Golenbock DT (1992) Lipopolysaccharide antagonists. Immunol Today 13:271–276CrossRefPubMedGoogle Scholar
  23. 23.
    Clausell A, Garcia-Subirats M, Pujol M, Busquets MA, Rabanal F, Cajal Y (2007) Gram-negative outer and inner membrane models: insertion of cyclic cationic lipopeptides. J Phys Chem Biol 111:551–563CrossRefGoogle Scholar
  24. 24.
    Vardakas KZ, Falagas ME (2017) Colistin versus polymyxin B for the treatment of patients with multidrug-resistant Gram-negative infections: a systematic review and meta-analysis. Int J Antimicrob Agents 49:233–238CrossRefPubMedGoogle Scholar
  25. 25.
    Velkov T, Roberts KD, Nation RL, Thompson PE, Li J (2013) Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol 8:711–724CrossRefPubMedGoogle Scholar
  26. 26.
    Pellegrino FLPC, Teixeira LM, Carvalho MGS, Nouér SA, Oliveira MP, Sampaio JLM, Freitas AD, Ferreira ALP, Amorim ELT, Riley LW, Moreira BM (2002) Occurrence of a multidrug-resistant Pseudomonas aeruginosa clone in different hospitals in Rio de Janeiro, Brazil. J Clin Microbiol 40:2420–2424CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sampaio LM, Gales AC (2016) Antimicrobial resistantace in Enterobacteriaceae in Brazil: focus a β-lactamase and polymyxins. Braz J Microbiol 47:31–37CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chen CY, Chen YH, Lu PL, Lin WR, Chen TC, Lin CY (2012) Proteus Mirabilis urinary tract infection and bacteremia: risk clinical presentation, and outcomes. J Microbiol Immunol Infect 45:228–236CrossRefPubMedGoogle Scholar
  29. 29.
    Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168CrossRefPubMedGoogle Scholar
  30. 30.
    Hood MI, Becker KW, Roux CM, Dunman PM, Skaar EP (2013) Genetic determinants of intrinsic colistin tolerance in Acinetobacter baumannii. Infect Immun 81:542–551CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR, Jacobs MR, Bonomo RA (2009) Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother 53:3628–3634CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E, Seemann T, Henry R, Crane B, Michael F, Cox AD, Adler B, Nation RL, Li J, Boyce JD (2010) Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 54:4971–4977CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nhu NTK, Riordan DW, Nhu TDH, Thanh DP, Thwaites G, Lan NPH, Wren BW, Baker S, Stabler RA (2016) The induction and identification of novel colistin resistance mutations in Acinetobacter baumannii and their implications. Sci Rep 6:1–10CrossRefGoogle Scholar
  34. 34.
    Lin M-F, Lin Y-Y, Lan C-Y (2017) Contribution of EmrAB efflux pumps to colistin resistance in Acinetobacter baumannii. J Microb Feb 55:130–136CrossRefGoogle Scholar
  35. 35.
    Loho T, Dharmayanti A (2015) Colistin: an antibiotic and its role in multiresistant Gram-negative infections. Acta Med Indones 47:157–168PubMedGoogle Scholar
  36. 36.
    Velkov T, Thompsom PE, Nation RL, Li J (2010) Structure-activity relationships of polymyxin antibiotics. J Med Chem 53:1898–1916CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Beceiro A, Llobet E, Aranda J, Bengoechea JA, Doumith M, Hornsey M, Dhanji H, Chart H, Bou G, Livermore DM, Woodford N (2011) Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother 55:3370–3379CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Arroyo LA, Herrera CM, Fernandez L, Hankins JV, Trent MS, Hancock RE (2011) The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrob Agents Chemother 55:3743–3751CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lean SS, Yeo CC, Suhaili Z, Thong KL (2016) Comparative genomics of two ST195 carbapenem-resistant Acinetobacter baumannii with different susceptibility to polymyxin revealed underlying resistance mechanism. Front Microbiol.
  40. 40.
    Rolain JM, Diene SM, Kempf M, Gimenez G, Robert C, Raoult D (2015) Real-time sequencing to decipher the molecular mechanism of resistance of a clinical pan-drug-resistant Acinetobacter baumannii isolate from Marseille, France. Antimicrob Agents Chemother 57:592–596CrossRefGoogle Scholar
  41. 41.
    Raetz CRH, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem 76:295–329CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Olaitan AO, Morand S, Rolain J-M (2014) Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol.
  43. 43.
    Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794:808–816CrossRefPubMedGoogle Scholar
  44. 44.
    Tzeng YL, Ambrose KD, Zughaier S, Zhou X, Miller YK, Shafer WM, Stephens DS (2005) Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 187:5387–5396CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Moskowitz SM, Ernst RK, Miller SI (2004) PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol 186:575–579CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Murray SR, Ernst RK, Bermudes D, Miller SI, Low KB (2007) PmrA(Con) confers pmrHFIJKL-dependent EGTA and polymyxin resistance on msbB Salmonella by decorating lipid A with phosphoethanolamine. J Bacteriol 189:5161–5169CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Mitrophanov AY, Jewett MW, Hadley TJ, Groisman EA (2008) Evolution and dynamics of regulatory architectures controlling polymyxin B resistance in enteric bacteria. PLoS Genet 4:1–11CrossRefGoogle Scholar
  48. 48.
    Wand ME, Bock LJ, Bonney LC, Sutton JM (2015) Retention of virulence following adaptation to colistin in Acinetobacter baumannii reflects the mechanism of resistance. J Antimicrob Chemother 70:2209–2216CrossRefPubMedGoogle Scholar
  49. 49.
    Mu X, Wang N, Li X, Shi K, Zhou Z, Yu Y, Hua X (2016) The effect of colistin resistance-associated mutations on the fitness of Acinetobacter baumannii. Front Microbiol 7:1–8Google Scholar
  50. 50.
    Napier BA, Burd EM, Satola SW, Cagle SM, Ray SM, McGann P, Pohl J, Lesho EP, Weiss DS (2013) Clinical use of colistin cross-resistance to host antimicrobials in Acinetobacter baumannii. MBio 4:1–5CrossRefGoogle Scholar
  51. 51.
    Moffatt JH, Harper M, Adler B, Nation RL, Li J, Boyce JD (2011) Insertion sequence ISAba11 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrob Agents Chemother 55:3022–3024CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Girardello R, Visconde M, Cayô R, Figueiredo RC, Mori MA, Lincopan N, Gales AC (2016) Diversity of polymyxin resistance mechanisms among Acinetobacter baumannii clinical isolates. Diagn Microbiol Infect Dis 87:37–44CrossRefPubMedGoogle Scholar
  53. 53.
    Lim TP, Ong RT, Hon PY, Hawkey J, Holt KE, Koh TH, Leong ML, Teo JQ, Tan TY, Ng MM, Hsu LY (2015) Multiple genetic mutations associated with polymyxin resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 59:7899–7902CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Beceiro A, Moreno A, Fernández N, Vallejo JA, Aranda J, Adler B, Harper M, Boyce JD, Bou G (2014) Biological cost of different mechanisms of colistin resistance and their impact on virulence in Acinetobacter baumannii. Antimicrob Agents Chemother 58:518–526CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lean SS, Suhaili Z, Ismail S, Rahman NI, Othman N, Abdullah FH, Jusoh Z, Yeo CC, Thong KL (2014) Prevalence and genetic characterization of carbapenem- and polymyxin-resistant Acinetobacter baumannii isolated from a tertiary hospital in Terengganu, Malaysia. ISRN Microbiol 2014:1–9CrossRefGoogle Scholar
  56. 56.
    Dafopoulou K, Xavier BB, Hotterbeekx A, Janssens L, Lammens C, Dé E, Goossens H, Tsakris A, Malhotra-Kumar S, Pournaras S (2015) Colistin-resistant Acinetobacter baumannii clinical strains with deficient biofilm formation. Antimicrob Agents Chemother 60:1892–1895CrossRefPubMedGoogle Scholar
  57. 57.
    Bojkovic J, Richie DL, Six DA, Rath CM, Sawyer WS, Hu Q, Dean CR (2015) Characterization of an Acinetobacter baumannii lptD deletion strain: permeability defects and response to inhibition of lipopolysaccharide and fatty acid biosynthesis. J Bacteriol 198:731–741CrossRefPubMedGoogle Scholar
  58. 58.
    Durante-Mangoni E, Del Franco M, Andini R, Bernardo M, Giannouli M, Zarrilli R (2015) Emergence of colistin resistance without loss of fitness and virulence after prolonged colistin administration in a patient with extensively drug-resistant Acinetobacter baumannii. Diagn Microbiol Infect Dis 82:222–226CrossRefPubMedGoogle Scholar
  59. 59.
    Rolain JM, Roch A, Castanier M, Papazian L, Raoult D (2011) Acinetobacter baumannii resistant to colistin with impaired virulence: a case report from France. J Infect Dis 204:1146–1147CrossRefPubMedGoogle Scholar
  60. 60.
    Pournaras S, Poulou A, Dafopoulou K, Chabane YN, Kristo I, Makris D, Hardouin J, Cosette P, Tsakris A, Dé E (2014) Growth retardation, reduced invasiveness, and impaired colistin-mediated cell death associated with colistin resistance development in Acinetobacter baumannii. Antimicrob Agents Chemother 58:828–832CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Mavroidi A, Likousi S, Palla E, Katsiari M, Roussou Z, Maguina A, Platsouka ED (2015) Molecular identification of tigecycline- and colistin-resistant carbapenemase-producing Acinetobacter baumannii from a Greek hospital from 2011 to 2013. J Med Microbiol 64:993–997CrossRefPubMedGoogle Scholar
  62. 62.
    Valencia R, Arroyo LA, Conde M, Aldana JM, Torres MJ, Fernández-Cuenca F, Garnacho-Montero J, Cisneros JM, Ortíz C, Pachón J, Aznar J (2009) Nosocomial outbreak of infection with pan-drug resistant Acinetobacter baumannii in a tertiary care university hospital. Infect Control Hosp Epidemiol 30:257–263CrossRefPubMedGoogle Scholar
  63. 63.
    Moffatt JH, Harper M, Mansell A, Crane B, Fitzsimons TC, Nation RL, Li J, Adler B, Boyce JD (2013) Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host Toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37. Infect Immun 81:684–689CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    García-Quintanilla M, Carretero-Ledesma M, Moreno-Martínez P, Martín-Peña R, Pachón J, McConnell MJ (2015) Lipopolysaccharide loss produces partial colistin dependence and collateral sensitivity to azithromycin, rifampicin and vancomycin in Acinetobacter baumannii. Int J Antimicrob Agents 46:696–702CrossRefPubMedGoogle Scholar
  65. 65.
    Luke NR, Sauberan SL, Russo TA, Beanan JM, Olson R, Loehfelm TW, Cox AD, Michael F, Vinogradov EV, Campagnari AA (2010) Identification and characterization of a glycosyltransferase involved in Acinetobacter baumannii lipopolysaccharide core biosynthesis. Infect Immun 78:2017–2023CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Whitfield C, Trent MS (2014) Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem 83:99–128CrossRefPubMedGoogle Scholar
  67. 67.
    Kabanov DS, Prokhorenko IR (2010) Structural analysis of lipopolysaccharides from Gram-negative bacteria. Biochemistry (Mosc) 75:383–404CrossRefGoogle Scholar
  68. 68.
    Schmidt J, Patora-Komisarska K, Moehle K, Obrecht D, Robinson JA (2013) Structural studies of β-hairpin peptidomimetic antibiotics that target LptD in Pseudomonas sp. Bioorg Med Chem 21:5806–5810CrossRefPubMedGoogle Scholar
  69. 69.
    Li X, Gu Y, Dong H, Wang W, Dong C Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane. Sci Rep 5:1–8Google Scholar
  70. 70.
    Malinverni JC, Silhavy TJ (2009) An ABC transport system that maintains lipid asymmetry in the Gram-negative outer membrane. Proc Natl Acad Sci U S A 106:8009–8014CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Carpenter CD, Cooley BJ, Needham BD, Fisher CR, Trent MS, Gordon V, Payne SM (2014) The Vps/VacJ ABC transporter is required for intercellular spread of Shigella flexneri. Infect Immun 82:660–669CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Suzuki T, Murai T, Fukuda I, Tobe T, Yoshikawa M, Sasakawa C (1994) Identification and characterization of a chromosomal virulence gene, vacJ, required for intercellular spreading of Shigella flexneri. Mol Microbiol 11:31–41CrossRefPubMedGoogle Scholar
  73. 73.
    Takaku C, Sekizuka T, Tazumi A, Moore JE, Millar BC, Matsuda M (2009) Campylobacter lari: molecular and comparative analyses of the virulence-associated chromosome locus J (vacJ) gene homologue, including the promoter region. Br J Biomed Sci 66:85–92CrossRefPubMedGoogle Scholar
  74. 74.
    Shen L, Gao X, Wei J, Chen L, Zhao X, Li B, Duan K (2012) PA2800 plays an important role in both antibiotic susceptibility and virulence in Pseudomonas aeruginosa. Curr Microbiol 65:601–609CrossRefPubMedGoogle Scholar
  75. 75.
    Xie F, Li G, Zhang W, Zhang Y, Zhou L, Liu S, Wang C (2016) Outer membrane lipoprotein VacJ is required for the membrane integrity, serum resistance and biofilm formation of Actinobacillus pleuropneumoniae. Vet Microbiol 183:1–8CrossRefPubMedGoogle Scholar
  76. 76.
    Zhao L, Gao X, Liu C, Lv X, Jiang N, Zheng S (2017) Deletion of the vacJ gene affects the biology and virulence in Haemophilus parasuis serovar 5. Gene 603:42–53CrossRefPubMedGoogle Scholar
  77. 77.
    Santos PM, Benndorf D, Sá-Correia I (2004) Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4:2640–2652CrossRefPubMedGoogle Scholar
  78. 78.
    Garénaux A, Guillou S, Ermel G, Wren B, Federighi M, Ritz M (2008) Role of the Cj1371 periplasmic protein and the Cj0355c two-component regulator in the Campylobacter jejuni NCTC 11168 response to oxidative stress caused by paraquat. Res Microbiol 159:718–726CrossRefPubMedGoogle Scholar
  79. 79.
    Hu WS, Lin JF, Lin YH, Chang HY (2009) Outer membrane protein STM3031 (Ail/OmpX-like protein) plays a key role in the ceftriaxone resistance of Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 53:3248–3255CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Métris A, George SM, Ropers D (2017) Piecewise linear approximations to model the dynamics of adaptation to osmotic stress by food-borne pathogens. Int J Food Microbiol 240:63–74CrossRefPubMedGoogle Scholar
  81. 81.
    Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71CrossRefPubMedGoogle Scholar
  82. 82.
    Opazo AC, Mella SM, Domínguez MY, Bello HT, González GR (2009) Multi-drug efflux pumps and antibiotic resistance in Acinetobacter baumannii. Rev Chil Infectol 26:1–5CrossRefGoogle Scholar
  83. 83.
    Vila J, Martí S, Sánchez-Céspedes J (2007) Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother 59:1210–1215CrossRefPubMedGoogle Scholar
  84. 84.
    Coyne S, Courvalin P, Périchon B (2011) Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother 55:947–953CrossRefPubMedGoogle Scholar
  85. 85.
    Rensch U, Nishino K, Klein G, Kehrenberg C (2014) Salmonella enterica serovar Typhimurium multidrug efflux pumps EmrAB and AcrEF support the major efflux system AcrAB in decreased susceptibility to triclosan. Int J Antimicrob Agents 44:179–180CrossRefPubMedGoogle Scholar
  86. 86.
    Furukawa H, Tsay JT, Jackowski S, Takamura Y, Rock CO (1993) Thiolactomycin resistance in Escherichia coli is associated with the multidrug resistance efflux pump encoded by emrAB. J Bacteriol 175:3723–3729CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Lomovskaya O, Lewis K (1992) Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci U S A 89:8938–8942CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Roma-Rodrigues C, Santos PM, Benndorf D, Rapp E, Sá-Correia I (2010) Response of Pseudomonas putida KT2440 to phenol at the level of membrane proteome. J Proteome 73:1461–1478CrossRefGoogle Scholar
  89. 89.
    Simoni S, Morroni G, Brenciani A, Vincenzi C, Cirioni O, Castelletti S, Varaldo PE, Giovanetti E, Mingoia M (2017) Spread of colistin resistance gene mcr-1 in Italy: characterization of the mcr-1.2 allelic variant in a colistin-resistant blood isolate of Escherichia coli. Diagn Microbiol Infect Dis.
  90. 90.
    AbuOun M, Stubberfield EJ, Duggett NA, Kirchner M, Dormer L, Nunez-Garcia J, Randall LP, Lemma F, Crook DW, Teale C, Smith RP, Anjum MF (2017) mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J Antimicrob Chemother 72:2745–2749CrossRefPubMedGoogle Scholar
  91. 91.
    Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, Zhang R, Walsh TR, Shen J, Wang Y (2017) Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio.
  92. 92.
    Carattoli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, Pezzotti G, Magistrali CF (2017) Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill.
  93. 93.
    Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I, Malorny B (2017) Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother 72:3317–3324CrossRefPubMedGoogle Scholar
  94. 94.
    Poirel L, Jayol A, Nordmann P (2017) Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 30:557–596CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Reynolds CM, Kalb SR, Cotter RJ, Raetz CR (2005) A phosphoethanolamine transferase specific for the outer 3-deoxy-d-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant. J Biol Chem 280:21202–21211CrossRefPubMedGoogle Scholar
  96. 96.
    Caniaux I, Van Belkum A, Zambardi G, Poirel L, Gros MF (2017) MCR: modern colistin resistance. Eur J Clin Microbiol Infect Dis 36:415–420CrossRefPubMedGoogle Scholar
  97. 97.
    Li X-P, Fang L-X, Jiang P, Pan D, Xia J, Liao X-P, Liu YH, Sun J (2017) Emergence of the colistin resistance gene mcr-1 in Citrobacter freundii. Int J Antimicrob Agents 49:786–787CrossRefPubMedGoogle Scholar
  98. 98.
    Kieffer N, Nordmann P, Poirel L (2017) Moraxella species as potential sources of MCR-like polymyxin-resistance determinants. Antimicrob Agents Chemother.
  99. 99.
    Liu BT, Song FJ, Zou M, Hao ZH, Shan H (2017) Emergence of colistin resistance gene mcr-1 in Cronobacter sakazakii producing NDM-9 and in Escherichia coli from the same animal. Antimicrob Agents Chemother 61:1444–1446Google Scholar
  100. 100.
    Stoesser N, Mathers AJ, Moore CE, Day NP, Crook DW (2016) Colistin resistance gene mcr-1 and pHNSHP45 plasmid in human isolates of Escherichia coli and Klebsiella pneumoniae. Lancet Infect Dis 16:285–286CrossRefPubMedGoogle Scholar
  101. 101.
    Gales AC, Jones RN, Sader HS (2011) Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006–2009). J Antimicrob Chemother 66:2070–2074CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Medical Microbiology, Central-West Campus Dona LinduFederal University of São João del-ReiDivinopolisBrazil
  2. 2.Laboratory of Laboratorial Diagnostic and Clinical Microbiology, Central-West Campus Dona LinduFederal University of São João del-ReiDivinopolisBrazil
  3. 3.Laboratory of Molecular and Celular Biology, Alto Paraopeba CampusFederal University of São João del-ReiOuro BrancoBrazil

Personalised recommendations