Pharmacokinetic considerations in selecting optimal antibiotic therapy for Mycoplasma pneumoniae encephalitis

  • Burke A. CunhaEmail author
  • Cheston B. Cunha


Effective antimicrobial therapy depends on several factors including degree of activity against the pathogen, antibiotic resistance, and when relevant, optimal tissue penetration factors. Central nervous system (CNS) infections illustrate these points well. The pharmacokinetic (PK) parameters important in antibiotic blood cerebrospinal fluid barrier (BCB) penetration that is important in meningitis are different and do not predict blood brain barrier (BBB) penetration. Recently, we had a case of Mycoplasma pneumoniae encephalitis (MPE) which prompted a review of the antibiotic PK determinants of BBB penetration which differ markedly from those of BCB penetration important in encephalitis. Using MPE as an illustrative example, this article reviews host and drug factors of therapeutic importance in optimally treating MPE.


CNS manifestations of Mycoplasma pneumoniae Blood brain barrier (BBB) Antibiotic lipid solubility Tissue penetration of hydrophilic and hydrophilic antibiotics Antibiotic penetration across brain barrier (BPB) 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Cunha CB, Cunha BA (eds) (2017) Antibiotic essentials, 15th edn. Jay Pee Medical Publishers, New DelhiGoogle Scholar
  2. 2.
    Ristuccia A, Cunha BA (Eds) (1984) Antimicrobial Therapy Raven Press NYGoogle Scholar
  3. 3.
    Grayson ML (Ed) Kucers (2010) The use of antibiotics (6th Ed) Arnold Publishers LondonGoogle Scholar
  4. 4.
    Barlow C (1964) Clinical aspects of the blood-brain barrier. Annu Rev Med 15:187–202CrossRefGoogle Scholar
  5. 5.
    Brodie BB, Kurz H, Schanker LS (1960) The importance of dissociation constant and lipid solubility in influencing the passage of drugs into the cerebrospinal fluid. J Pharmacol Exp Ther 130:20–25Google Scholar
  6. 6.
    Davson H, Smith H (1957) Discussion on the penetration of drugs into the cerebrospinal fluid. Proc R Soc Med 50:963–967Google Scholar
  7. 7.
    Fishman R (1966) Blood brain and CSF barriers to penicillin and related organic acids. Arch Neurol 15:113–124CrossRefGoogle Scholar
  8. 8.
    Wood W, Kipnis G (1953) The concentrations of tetracycline, chlortetracycline and oxytetracycline in the cerebrospinal fluid after intravenous injection. Antibiot Annu 4:98–101Google Scholar
  9. 9.
    Thrupp L, Leedom J, Tyler D, Wehrle P, Portnoy B, Mathies AW (1965) Ampicillin levels in the cerebrospinal fluid during the treatment of bacterial meningitis. Antimicrob Agents Chemother 5:206–213Google Scholar
  10. 10.
    Oldendorf W (1974) Blood brain barrier permeability to drugs. Annu Rev Pharmacol 14:239–248CrossRefGoogle Scholar
  11. 11.
    Rahal J (1972) Treatment of gram-negative bacillary meningitis in adults. Ann Intern Med 77:295–302CrossRefGoogle Scholar
  12. 12.
    Barling RW, Selkon JB (1978) The penetration of antibiotics into cerebrospinal fluid and brain tissue. J of Anti Microb Chemo 4:203–227CrossRefGoogle Scholar
  13. 13.
    Dotevall L, Hagberg L (1989) Penetration of doxycycline into cerebrospinal fluid in patients treated for suspected Lyme neuroborreliosis. Antimicrob Agents Chemother 33:1078–1080CrossRefGoogle Scholar
  14. 14.
    Barza M, Brown RB, Shanks C, Gamble C, Weinstein L (1975) Relation between lipophilicity and pharmacological behavior of minocycline, doxycycline, tetracycline and oxytetracycline in dogs. Antimicrob Agents Chemother 6:713–720CrossRefGoogle Scholar
  15. 15.
    Cunha BA (2000) Minocycline versus doxycycline in the treatment of Lyme neuroborreliosis. Clin Infect Dis 30:237–238CrossRefGoogle Scholar
  16. 16.
    Dinkel K, Ogle WO, Sapolsky RM (2002) Glucocorticooids and central nervous system inflammation. J Neuro-Oncol 8:513–528Google Scholar
  17. 17.
    Sorrells SF, Sapolsky RM (2007) An inflammatory review of glucocorticoid actions in the CNS. Brain Behav Immun 21:259–272CrossRefGoogle Scholar
  18. 18.
    Wildenbeest JG, Said I, Jaeger B, van Hest RM, van de Beek D, Pajkrt D (2016) Neonate with Mycoplasma hominis meningoencephalitis given moxifloxacin. Lancet Infect Dis 16:e261–e266CrossRefGoogle Scholar
  19. 19.
    Kang-Birken SL, Castel U, Prichard JG (2010) Oral doxycycline for treatment of neurosyphilis in two patients infected with human immunodeficiency virus. Pharmacotherapy 30:119e–122eCrossRefGoogle Scholar
  20. 20.
    Savin S, Houis G (1988) Clinical pharmacokinetics of doxycycline and minocycline. Clin Pharmacokinet 15:355–366CrossRefGoogle Scholar
  21. 21.
    Kumar R, Basu A, Sinha S, Das M, Tripath P, Jain A et al (2016) Role of oral minocycline in acute encephalitis syndrome in India – a randomized controlled trial. BMC Infect Dis 16:1385–1386Google Scholar
  22. 22.
    Jaruratanasirikul S, Hortiwakul R, Tantisarasart T, Rheunpatham N, Tussanasunthornwong S (1996) Distribution of Azithromycin into brain tissue, cerebrospinal fluid, and aqueous humor of the eye. Antimicrob Agents Chemother 40:825–826CrossRefGoogle Scholar
  23. 23.
    Knausz M, Niederland T, Dósa E, Rozgonyi F (2002) Meningo-encephalitis in a neonate caused by maternal Mycoplasma hominis treated successfully with chloramphenicol. J Med Microbiol 51:187–188CrossRefGoogle Scholar
  24. 24.
    Simpkins A, Strickland SM, Oliver J, Murray DL, Steele JC, Park YD, Sharma S (2011) Complete resolution of advanced Mycoplasma pneumoniae encephalitis mimicking brain mass lesions: report of two pediatric cases and review of literature. Neuropathology 32:91–99CrossRefGoogle Scholar
  25. 25.
    Smith C, Sangster G (1972) Mycoplasma pneumoniae meningoencephalitis. Scand J Infect Dis 4:69–71CrossRefGoogle Scholar
  26. 26.
    Daxboeck F, Blacky A, Seidl R, Krause R, Assadian O (2004) Diagnosis, treatment, and prognosis of Mycoplasma pneumoniae childhood encephalitis: systematic review of 58 cases. J Child Neurol 19:865–871CrossRefGoogle Scholar
  27. 27.
    Macdonald H, Kelly RG, Allen S, Noble JF, Kanegis LA (1973) Pharmacokinetic studies on minocycline in man. Clin Pharmacol Ther 14:852–861CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Infectious Disease DivisionNYU Winthrop HospitalMineolaUSA
  2. 2.School of MedicineState University of New YorkNew YorkUSA
  3. 3.Division of Infectious DiseaseRhode Island Hospital and The Miriam HospitalProvidenceUSA
  4. 4.Brown University Alpert School of MedicineProvidenceUSA

Personalised recommendations